

New Bedford State Pier Transfer Bridge New Bedford, Massachusetts

Collins Project No. 16077.00

Existing Conditions Report November 2024

SUBMITTED BY:

1485 South County Trail, Suite 103 East Greenwich, Rhode Island 02818

SUBMITTED TO:

93 State Pier New Bedford, MA 02740

REVISION RECORD

Rev#	Date Issued	Description of Revisions
0	9/20/2024	Draft Existing Conditions Report
1	11/14/2024	Winch Inspection Report
2	11/27/2024	Final Existing Conditions Report

TABLE OF CONTENTS

		<u>Pa</u>	ge
1.0 IN	ITRODU	JCTION	1
	1.1	Purpose and Scope	1
	1.2	Facility Description	1
	1.3	Inspection Methodology	2
	1.4	Rating Criteria	3
2.0. IN:	SPECTIO	ON FINDINGS	7
	2.1	Observed Deficiencies	7
	2.2	Remaining Useful Life	7
3.0 RE	сомм	ENDATIONS	8
REPOR	FIGUI FIGUI	RES RE 1 – USGS Location Map RE 2 – Aerial Location Plan RE 3 – FEMA Flood Map	

APPENDICES

APPENDIX A – Photographs

APPENDIX B – Report Drawing

APPENDIX C – Load Rating Calculations

APPENDIX D – Winch Inspection Report

1.0 INTRODUCTION

1.1 Purpose and Scope

The purpose of this Existing Conditions Report is to provide an overall assessment of the condition of the steel-framed Transfer Bridge (Roll-on Roll-off ramp) and appurtenances at the New Bedford State Pier and provide recommended actions to address deficiencies. Collins completed a Routine Level inspection of the above-water components on August 8, 2024, which included the steel-framed Roll-on Roll-off ramp, steel tower structure, fender system components, concrete foundations/pier caps, and steel piles. The fender panels along the north side of the State Pier were not included in the scope of the inspection; however, any gross defects observed during the inspection were noted. The mechanical and electrical components including the winch and pulley systems were inspected by American Crane and Hoist Corporation on October 23, 2024.

The following report includes a description of the structural elements inspected, the inspection methodology, a summary of inspection findings and condition ratings, remaining service life estimation, and repair recommendations. Inspection photographs are included in Appendix A of this report, and drawings to supplement the information contained in this report are provided in Appendix B.

1.2 Facility Description

The Transfer Bridge (the Ramp) at the New Bedford State Pier is located on the Acushnet River and is comprised of a steel frame Roll-on Roll-off ramp, a hoist tower structure with a catwalk, two (2) berthing dolphins and fender systems which support a steel guide tower, a pile-supported concrete abutment, and an offset pile supported dolphin. A winch and cable system allows the Bridge to raise and lower to meet incoming ferries. The Bridge is primarily used by pedestrians to board and debark incoming and outgoing water ferry services; however, the Bridge was originally designed to accommodate up to HS-20 vehicle loads.

Repair drawings from Webster Engineering Co., Inc. dated 1999 were made available to Collins prior to the inspection and depict modifications and repairs to the pier and Roll-on Roll-off ramp. The ramp was originally constructed circa 1990 for the Fore River Shipyard in Quincy, MA, and was relocated and modified for New Bedford State Pier in or around 2000.



Figure 1: Aerial (Reference: Google Earth)

The steel framed Roll-on Roll-off ramp is approximately 112' long x 20' wide and has two (2) welded steel plate girders constructed with a 6' tall x ½" thick web and 24" wide x 1-3/4" thick flanges as the ultimate superstructure supports. The girders support eight (8) W33x130 floorbeams and one (1) W30x132 floorbeam at the west end. The floorbeam bottom flanges are coped at the connection area to the girder. Within the floorbeam spans are five (5) W21x93 joists which have a coped top flange at the connection point with the floorbeam. The joists support a steel grating which consists of 6" x 3/8" bearing bars spaced at 3" on center with 1-3/4" x 1/4" cross bars spaced at 3" on center with a walking plate 5' wide x 3/8" thick that runs the length of the center of the deck grating. There are 12" high x 12" wide timber curbs along each side of the ramp decking. The ramp is supported with hinged bearings on top of a pile supported pier abutment at the west end and is suspended by double 1-3/4" diameter cables at the east end at the hoist towers on either side of the ramp, which are founded on the concrete dolphins with 16" diameter concrete-filled steel pipe piles. Per available plans, the piles are driven and socketed a minimum of 25' into bedrock. The hoist towers consist of W12x50 columns with lateral and diagonal stiffeners, with steel cables used to raise and lower the ramp with a counterweight and electric winch. There is a catwalk 44' long x 7' wide that connects the tops of the hoist towers, and approximately 47'-5" from the west end of the ramp there is a manual hoist winch assembly.

There are three (3) pile supported dolphin fender systems in the vicinity of the ramp. Two (2) are directly east to the hoist towers, designated as the north and south dolphin fenders, and one (1) is approximately 50' northeast into the river, designated as the northeast dolphin fender. The north and south dolphins adjacent to the ramp are connected by a steel support tower which is used to align the ramp during raising and lowering operations. The dolphins consist of a mass concrete cap supported by concrete-filled steel pipe piles, and rubber leg fenders and steel fender frames with UHMW facing plates. The north and south fender systems adjacent to the ramp have an inner and outer fender panel, and the northeast fender system in the river has a single fender panel on the south face.

The inspection of the existing pier and wharf was not within the inspection scope, nor was the fender system located east of the Ramp along State Pier. There are several barges stored beneath the Ramp, and although they do not affect the structural capacity, it should be noted that if broken loose may impact ferry operations.

1.3 Inspection Methodology

Collins completed a visual and tactile inspection of the waterfront infrastructure within the scope of the work located at the New Bedford State Pier in accordance with the ASCE Waterfront Facilities Inspection and Assessment Manual (MOP 130) to develop a general condition evaluation of structural members and locate areas of significant deterioration.

The Level I inspection was performed on the entirety of the structure and consisted of a visual inspection to document general conditions, record abnormalities, and locate observable defects, and a tactile inspection was completed on representative structural members with observed deterioration to document other deterioration that may not be visibly present.

The above and below water structural components are typically evaluated and assigned condition ratings using the American Society of Civil Engineers (ASCE) Manuals and Reports on Engineering Practice No. 130 (MOP 130): Waterfront Facilities Inspection and Assessment Manual. The terminology used to describe the observed

conditions, the rating criteria, and component grades are developed from the MOP 130 (2015 edition) and are described in Section 1.4 RATING CRITERIA.

1.4 Rating Criteria

The general condition assessment ratings for the inspected structural elements and component groups are based on a six-point assessment scale developed by ASCE. The six condition ratings are as follows:

- Good (6) No visible damage or only minor damage is noted. Structural elements may show very minor deterioration, but no overstressing is observed. No repairs are required.
- Satisfactory (5) Limited minor to moderate defects or deterioration are observed, but no overstressing is observed. No repairs are required.
 - Fair (4) All primary structural elements are sound, but minor to moderate defects or deterioration are observed. Localized areas of moderate to advanced deterioration may be present but do not significantly reduce the load-bearing capacity of the structure. Repairs are recommended, but the priority of the recommended repairs is low.
 - Poor (3) Advanced deterioration or overstressing is observed on widespread portions of the structure but does not significantly reduce the load-bearing capacity of the structure.

 Repairs may be carried out with moderate urgency.
 - Serious (2) Advanced deterioration, overstressing, or breakage may have significantly affected the load-bearing capacity of primary structural components. Local failures are possible and loading restrictions may be necessary. Repairs may need to be carried out on a high-priority basis with urgency.
 - Critical (1) Very advanced deterioration, overstressing, or breakage has resulted in localized failure(s) of primary structural components. More widespread failures are possible or likely to occur, and load restrictions should be implemented as necessary. Repairs may need to be carried out on a very priority basis with strong urgency.

For developing condition state ratings for steel members, Figure 2 below from MOP 130 was used.

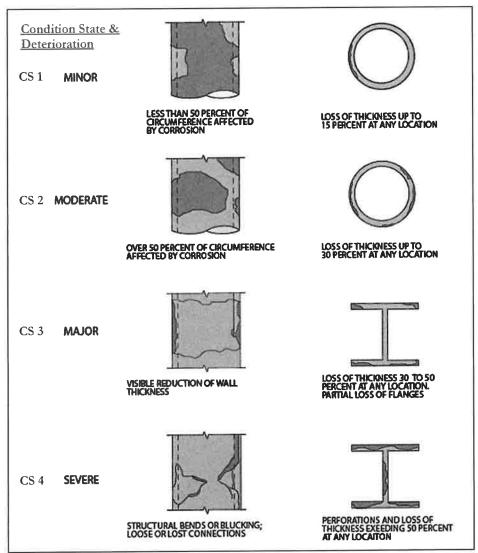


Figure 2: Condition Ratings for Steel Elements (Reference: MOP 130)

For developing condition state ratings for timber elements, Figure 3 below from MOP 130 was used.

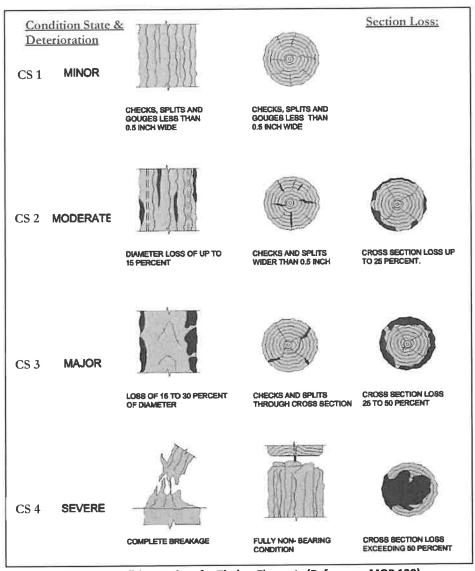
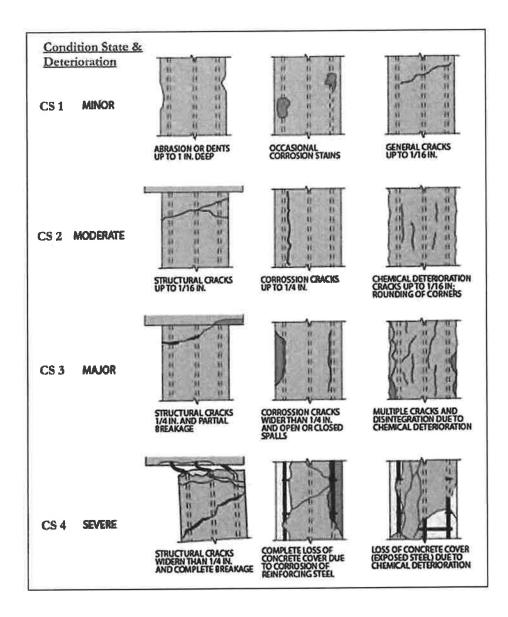



Figure 3: Condition Ratings for Timber Elements (Reference: MOP 130)

For developing condition state ratings for concrete elements, Figure 4 below from MOP 130 was used.

2.0 INSPECTION FINDINGS

Overall, the Ramp infrastructure appears to be in **Fair to Satisfactory** condition overall. The following provides details of the observed deficiencies for each element inspected, an estimate of remaining service life, and repair recommendations. The figures in Appendix B provide additional information and locations of observed deficiencies.

2.1 Observations

Transfer Bridge Structure

The transfer bridge structure consisting of the welded plate girders, floorbeams, joists, deck grating, and timber curbs was observed to be in Fair condition overall. There is coating loss with bubbling on the joists and floor beams that covers approximately 25% of the surface area. In the areas that have coating loss, there is light to moderate corrosion and rust with negligible section loss, most notably at the east end of the pier where ferries berth. The connection bolts at the floorbeam-girder and joist-floorbeam connections have moderate corrosion with isolated areas of laminated rust. The hinged bearings were observed to have no significant defects. On the topside, the walking plate and the deck grating were observed to have no significant defects. The steel transition plate that connects the ramp and the adjacent platform is unstable and slightly bent, presenting a potential tripping hazard. Additionally, the south marker light at the ramp entrance is missing. The timber curbs along the deck edges have moderate severe rot and section loss most notably near the entrance; however, the timber curbs are in place to prevent vehicles from coming in contact with the girders and do not affect the load capacity of the structure.

Concrete Pier Connection and Cable Foundation

The concrete pier connection at the west of the ramp and concrete hoist tower foundations that support the east side of the ramp were observed to be in **Fair** Condition. The hoist tower foundations were observed to have isolated spalls up to 8" diameter x 1" deep with no other significant defects observed. The piles supporting the hoist towers exhibited approximately 50% loss of coating within the tidal and splash zone. Within the areas of coating loss, pitting up to 1/8" deep was typically observed with isolated areas of laminated rust up to 1/4" deep. Minor marine growth was observed within the tidal zone.

The reinforced concrete "abutment" had isolated hairline cracks with efflorescence; the concrete was sounded and no significant hollow areas were found. An isolated spall up to 18" diameter x 2" deep was observed on the northeast corner of the abutment. Minor marine and algae growth was observed on the abutment and supporting piles. The steel pipe support piles exhibited approximately 50% loss of coating within the tidal and splash zone exhibited areas of laminated rust up to 1/8" deep covering approximately 10% of the surface area.

Concrete Dolphins and Fender Systems

The dolphins and fender systems were observed to be in overall Fair condition. The mass concrete caps on all dolphins had hairline map cracking with efflorescence throughout the surface with no hollow areas observed. There is a spall on the southeast corner of the northeast dolphin fender 16" high x 12" wide x 3" deep and scaling/spalling on the northeast corner full height x 8" wide x 3" deep. The steel fender panels exhibited coating loss on approximately 10% of the total surface area, concentrated within the splash zone. Within the areas of coating loss, areas of laminated rust up to 1/8" deep was observed. The chains and hardware were observed to have minimal rust in the splash zone. The UHMW facing plates were gouged with moderate to heavy scraping, most notably on the inner fenders adjacent to the ramp. Several studs that connect the UHMW facing plates to

the steel panel were missing, and a missing facing plate was noted on the northeast dolphin fender within the tidal zone.

Cable and Support Towers

The steel cable and support towers to the north and south of the ramp were observed to be in **Satisfactory** condition. There were no significant deficiencies on the steel superstructure that makes up the four (4) towers. The catwalk connecting the hoist towers was observed to have chipped and fading paint throughout, but no significant corrosion or deterioration was noted.

Winch and Pulley Systems

The winch and pulley systems were inspected by American Crane and Hoist Corporation (ACHC) on October 23, 2024, and were observed to be in overall **Fair** condition. Although the ramp is raised and lowered on a daily basis depending on tides and ferry operations, ACHC noted that it appeared as though the system had not been used in several years, likely due to minimal observed wear. The most significant deficiencies include rotting on the guards, decreased diameter of the wire rope by approximately 0.21" with loose strands throughout, and deterioration of the brake pads. Although it does not appear to affect the safety or operations of the transfer bridge, there was a loose bolt noted on the electric winch for the counterweight, and the steel angles on the wire rope counterweights are bent on both sides.

The Winch Inspection Report is in Appendix D.

2.2 Structural Capacity

As part of the evaluation of the structure, Collins completed a load rating of the ramp superstructure which is included in Appendix C. Reduction factors have been applied to the calculations based on the deficiencies and deterioration described in this report. Based upon the structural configuration and the conditions observed at the time of the inspection, the ramp can safely accommodate pedestrian loading and has been rated to accommodate HS-20.

2.3 Remaining Useful Life

Waterfront structures typically have a design life of 25 to 50-years, but the probable service life expectancy estimates are highly subjective based on the material, existing conditions, environmental exposure, wear and tear, and the type of construction.

The original steel ramp superstructure is approximately 35 years old and was rehabbed approximately 25 years ago when it was moved to its current location. The steel pipe piles were installed at that time, and are approximately 25 years old. The superstructure is located above the splash zone, minimizing the exposure to the harsh marine environment. The steel support piles show signs of moderate section loss which has been minimized by the original pile coating. Although the coating has reduced the overall section loss and extended the service life, it is mostly worn away within the splash zone and corrosion rates will most likely accelerate if not repaired. Based upon the conditions observed at the time of the inspection, the estimated remaining useful service life of approximately 25-30 years, which could be extended with proper maintenance and repair.

3.0 RECOMMENDATIONS

The following recommendations outlined below should be implemented to increase the remaining useful service life of the Roll-on Roll-off ramp at the New Bedford State Pier. See Table 1 below for a breakdown of the recommendations and rough order of magnitude cost estimates.

Ramp Structure

Recommended repairs to the ramp structure include recoating of all structural elements, including girders, floorbeams, joists, and grating, and replacement of the timber curbs. Although no significant section loss was observed during the inspection, the observed rust and corrosion will continue to advance without remediation. The application of an epoxy or marine-grade coating will mitigate future section loss from occurring. The timber curbs are more important to the structure if the ramp is used for vehicle access, so replacement of the timber curbs, although not structurally significant, will greatly improve the aesthetics of the ramp. The transition plate at the west end of the ramp should be securely connected or replaced with a pivoting ramp to mitigate and/or remove the potential tripping hazard. Although the pivot bearings were found to have no significant deficiencies, regular inspection and application of grease will help them continued to operate problem-free.

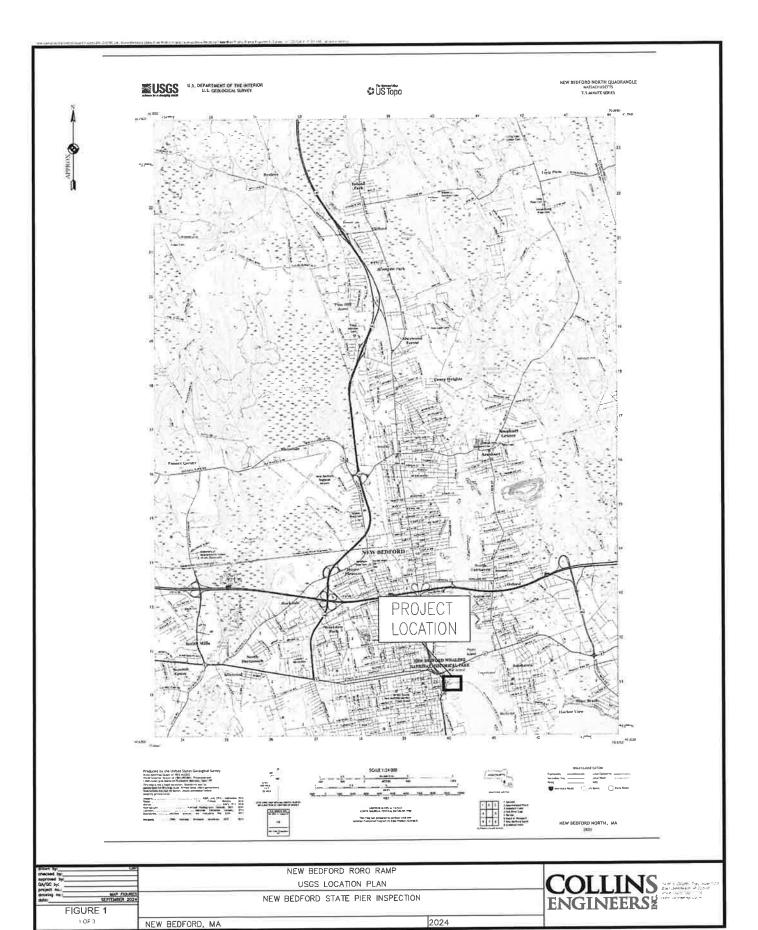
Piles

Recommended repairs to the steel pipe support piles include cleaning and recoating the upper 12' of the hoist tower piles and upper 7' of the abutment piles. The application of a coal tar epoxy or similarly effective coating to the piles will help to mitigate further advancement of the observed corrosion, ensuring the concrete within the steel pipe is not exposed to seawater.

Fender Systems

It is recommended that the missing UHMW facing plate be replaced at northeast dolphin fender to avoid vessel impact damage to the steel fender and damage to incoming vessels. The lower chain hardware for all fender panels should be monitored as it is within the splash zone, and the strength of the chains will reduce as corrosion continues to worsen.

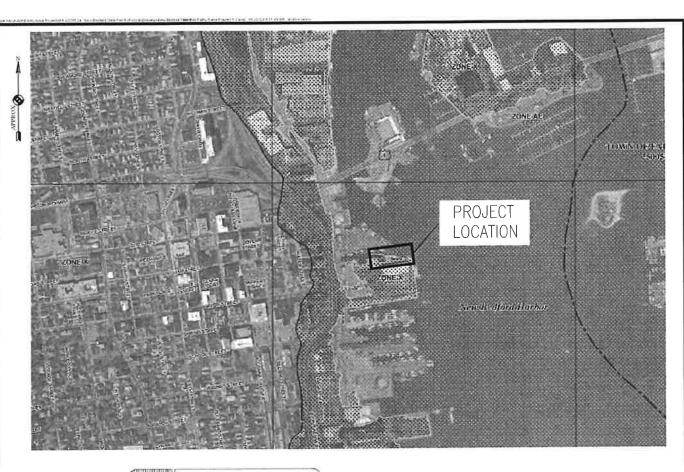
Winch and Pulley Systems


It is recommended that the wire rope, guards, and brake pads be replaced on the winch and pulley systems. When replacing the wire rope, the winch should be cleaned, painted and lubricated. Additionally, the hand wheel and ratchet should be cleaned and lubricated, and the gearcase should be lubricated. The loose bolt on the transfer bridge counterweight should be tightened and the bent angles should be replaced.

Routine Inspections

For future budgeting purposes, it is recommended that routine inspections are completed every 4 years in accordance with industry guidance presented in MOP 130. The inspection frequency is a function of the condition rating of the structure (Fair) and type of environment (aggressive).

Report Figures


digen by:	GS
office plants	
grante acr	MAP FIGURES SEPTEMBER 2024
FIG	URE 2
2	2 OF 3

NEW BEDFORD RORO RAMP AERIAL LOCATION PLAN

NEW BEDFORD STATE PIER RAMP INSPECTION

NEW BEDFORD, MA 2024

NEW BEDFORD, MA

PAMEL 0393G

FIRM

FLOOD INSURANCE RATE MAP BRISTOL COUNTY, MASSACHUSETTS (ALL JURISDICTIONS)

PANEL 393 OF 550 (SBE MAP INCEX FOR FIRM PANEL LAYOUT)

COMMUNITY BURBLES
MADE TO MOVE SHOULD SHOULD

MAP NUMBER 25005C0383G MAP REVISED JULY 16, 2014

Federal Emergency Management Agency

MAP SCALE 1" = 600'

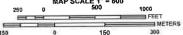


FIGURE 3 3 OF 3

NEW BEDFORD RORO RAMP FEMA FLOOD MAP

NEW BEDFORD STATE PIER RAMP INSPECTION

COLLINS SEE COUNTY OF SEE COUN

2024

Appendix A – Photographs

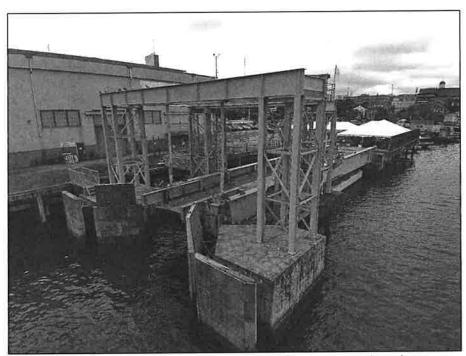


Photo 1 – Overall View of Roll-on Roll-off Ramp (looking southwest)

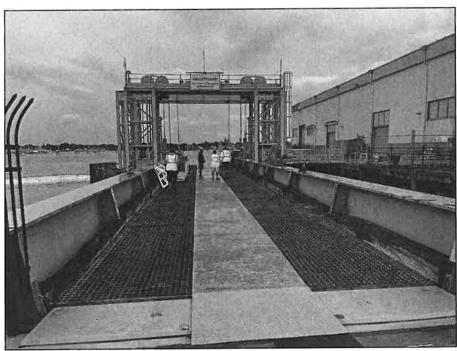


Photo 2 – Topside of Ramp (looking east)

Photo 3 – Typical Dolphin Fender Condition (north dolphin shown)

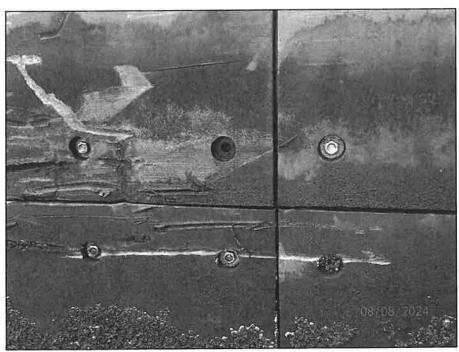


Photo 4 - View of fender plate scraping and missing stud

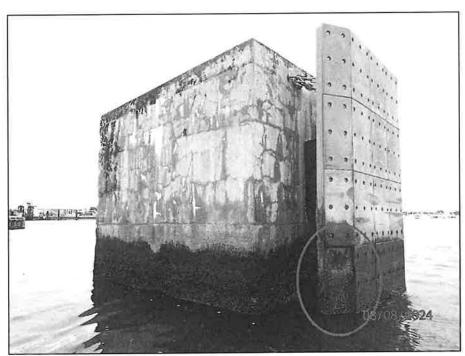


Photo 5 – Missing facing plate on Northeast Fender Dolphin

Photo 6 -Northeast Fender Dolphin scale/spall at northeast corner

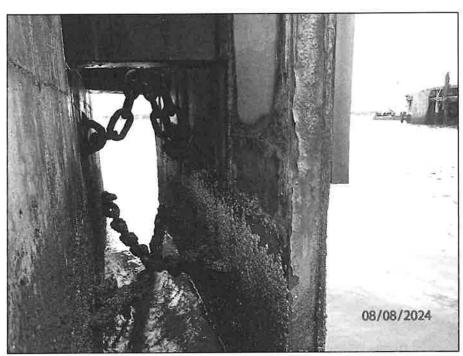


Photo 7 – Typical Fender Steel Panel and Chain Hardware Condition

Photo 8 – Underside of Ramp Superstructure (looking west)

Photo 9 – Typical Missing/Peeling Paint and Corrosion of Ramp

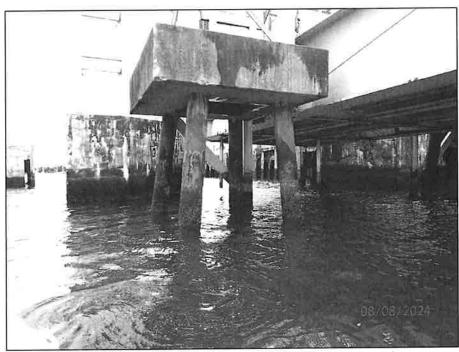


Photo 10 – Hoist Tower Dolphin looking east, note minor spalls at base of concrete



Photo 11 – View of up to 1/4" deep Section Loss at Hoist Tower Pile

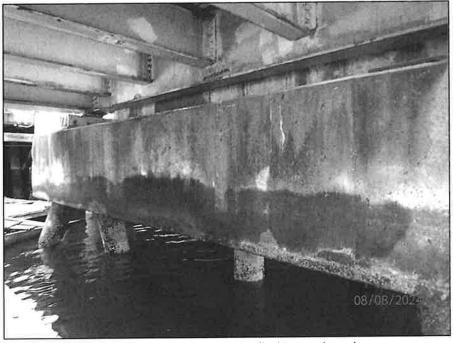


Photo 12 – Abutment Elevation (looking southwest)

Photo 13 – Abutment North End (note spall)

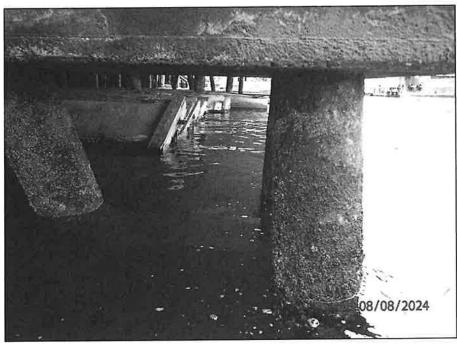


Photo 14 – Typical Abutment Pile Condition (looking west)

Photo 15 – View of Severe Rot and Section Loss of Timber Curb

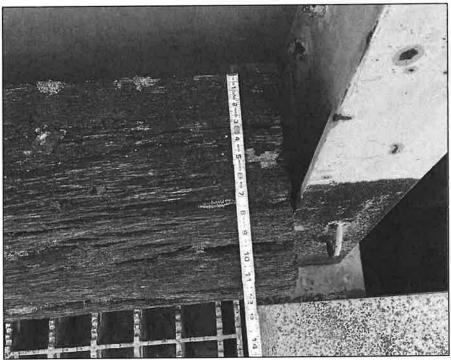


Photo 16 – Typical Timber Curb Condition

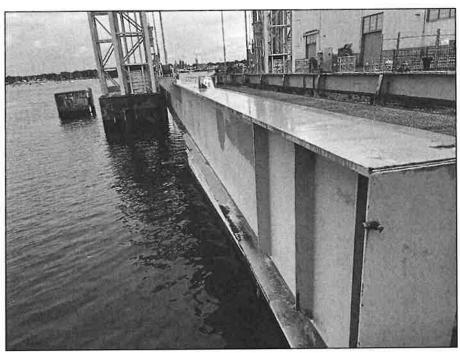


Photo 17 – View of North Ramp Girder

Photo 18 – View of Southeast Hoist Tower Base

Photo 19 – View of Southwest Hoist Tower Base



Photo 20 – Cable reel mounted to the north girder

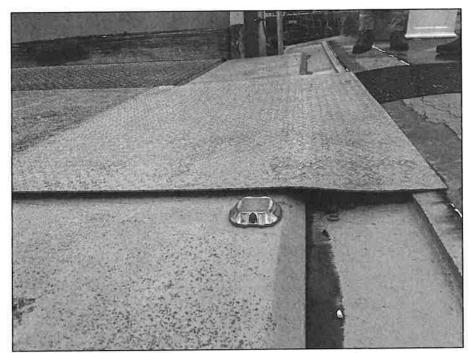
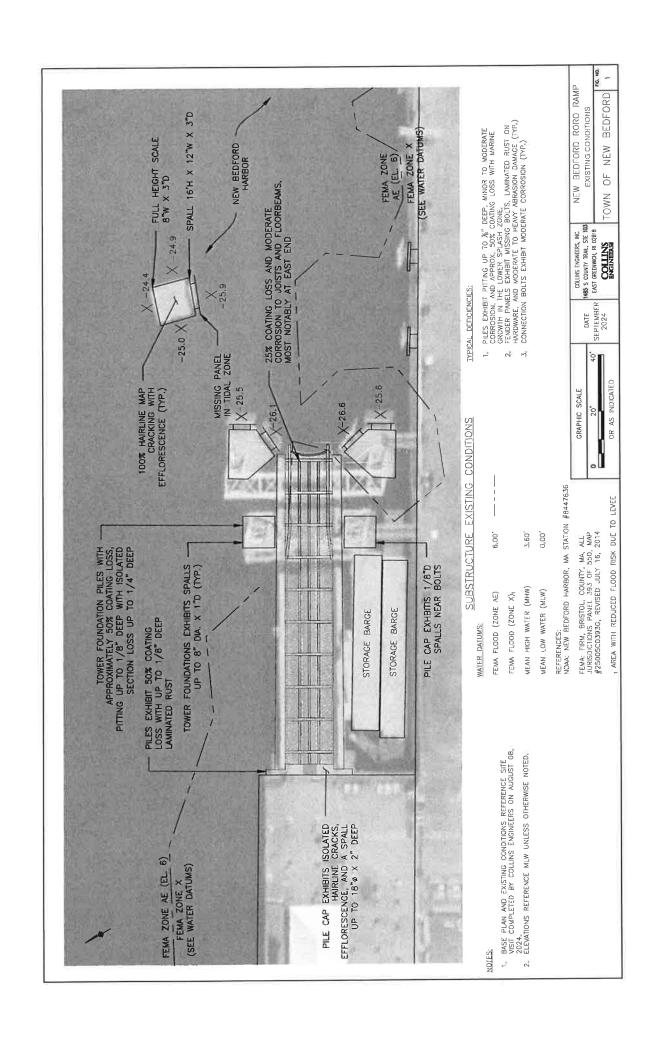
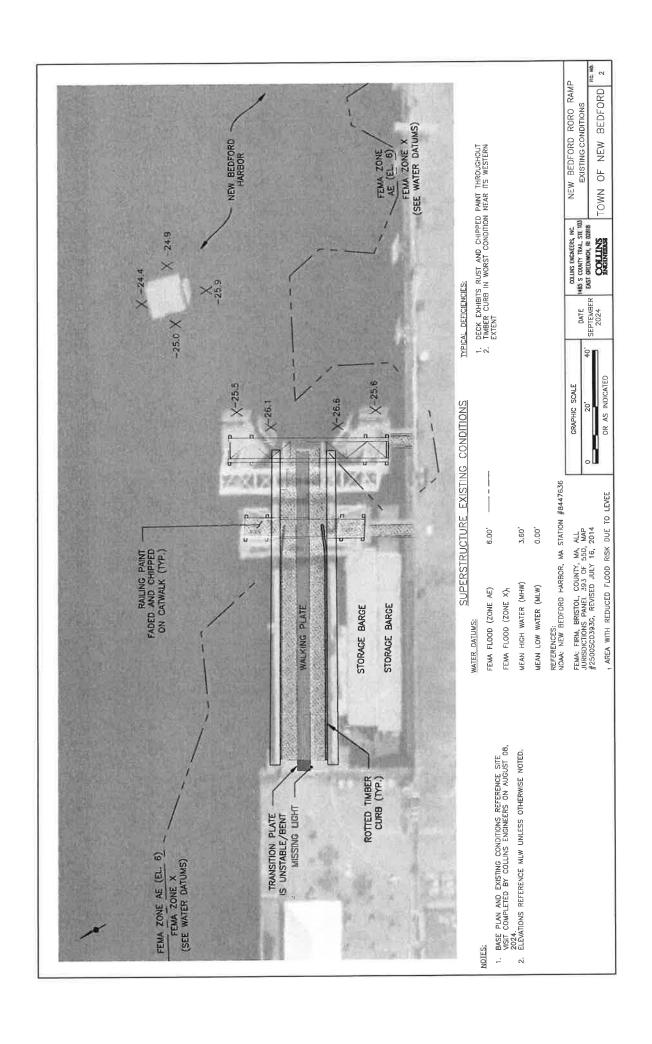




Photo 21 – View of Unstable and Bent Transition Plate

Appendix B – Report Drawings

Appendix C – Load Rating Calculation

Sheet No.	1 of 16
Project No.	15-16077.00
Phase No.	
Revision No.	
Date	9/20/2024

Design Calculations

Project Title: New Bedford State Pier Inspection

Client: Mass Development

Purpose of Calculations:

The purpose of these calculations is to determine if the existing RoRo ramp is capable of supporting pedestrian and vehicle loadings in New Bedford, Massachusetts. The analysis includes ratings of all elements providing structural support.

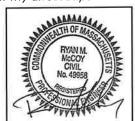
Conclusions:

- 1. Load Rating Analysis
 - a. Based on the existing condition of the RoRo ramp at the time of inspection (8/8/2024), it may be rated for the State Legal Load of HS-20 and pedestrian access.
 - b. The limiting structural element is the grating

Originated By: Date: 9/19/2024

Printed Name: Andrew VanRoy, E.I.T.

Checked By: Date: 9/20/2024


Printed Name: Christopher Sylvia, E.I.T.

eviewed By: Date: 9/20/2024

Printed Name: Ryan McCoy, P.E.

The following calculations were prepared under my direct supervision.

NOTE: These calculations were prepared for the specific loadings and conditions associated with this specific site. Any reuse of these calculations or structure(s), without the express written consent of Collins Engineers, Inc., will be at the sole risk of the user and without liability or legal exposure to Collins Engineers, Inc.

Sheet No.	2 of 16
Project No.	13922.00
Phase No.	
Revision No.	
Date	9/20/2024

Design Calculations

Design Codes and References Used in Calculations:

- 1. Plans titled "Harbor Development Commission New Bedford State Pier Ferry Terminal, Contract No. 2: Transfer Bridge Modifications and Relocation" Dated December 1999 by Webster Engineering Co., Inc.
- 2. American Institute of Steel Construction, Steel Construction Manual, 14th Edition
- 3. Indiana Grating Inc. Structural Specification for 38-W-4 Heavy Duty Welded Steel Grating
- 4. ACI 318-19 Building Code Requirements for Structural Concrete
- 5. AASHTO Standard Specifications for Highway Bridges, 17th Edition, 2002
- AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges, December 2009

Assumptions:

- 1. The allowable span length of the existing grating is approximately 67% of that for 38-W-4 Heavy Duty Welded Steel Grating with bearing bar size 6"x1/2".
- 2. Weight of concrete is 150 pcf (γ_c =150 pcf).
- 3. Weight of steel is 0.284 lb/in³ (γ_s =0.284 lb/in³).
- 4. There have been no significant deviations in the existing structure from the historic plans.
- 5. The conditions of the existing site remain unchanged since the date of inspection.

Structural Analysis of New Bedford State Pier Roll-on Roll-off Ramp

BY: <u>AVR_DATE: 9/19/24</u> CHK: <u>CJS_DATE:9/20/24</u>

The second of th	No. Dedied Chate Dies Ball on Ball off Dame An inspection
This analysis includes a structural assessment of the conducted by Collins Engineers on August 8, 2024, in the structure, as defined below.	New Bedford State Pier Roll-on Roll-off Ramp. An inspection dicated defects that presently effect the structural capacity o
Section A: Inputs and Loadings	
Geometry Input:	
$L_{J} = 13.75 ft$	Length of Joist per span
$W_{I} := 4 ft$	Joist spacing
$L_{Girder} = 112 ft$	Girder Length
L_{JT} := 13.75 ft	Length of T-Joist per span.
$L_B \coloneqq 20~ extit{ft}$	Length of Beam.
$A_{Grating} \coloneqq L_J \colon W_J = 55 \; extbf{ft}^2$	Max. Unsupported Grating Area
$L_{Ptle}\!\coloneqq\!40~\dot{f}t$	Pile Length (PLACEHOLDER)
$_{-}^{\perp}d_{Pdes}\coloneqq 16~in$	Pile Diameter
$\gamma_C \coloneqq 150 \; pcf$	Unit weight of concrete (assumed).
$\gamma_S = 0.284 \frac{lbf}{in^3}$	Unit weight of steel (assumed)
Structural Strengths	
f _y = 36 ksi	Yield strength of steel per as-built drawings
E:= 29000 ksi	Steel Modulus of Elasticity
$F_{LL} := 1.6$	Live load factor, UFC 4-152-01 Table 3-7
$F_{DL} = 1.2$	Dead load factor, UFC 4-152-01 Table 3-7
oadings	
$P_{LL_Pedestrian} \coloneqq 90 \; \textit{psf}$	Pedestrian Live Load, AASHTO LRFD Guide Specs fo the Design of Pedestrian Bridges, Section 3.1
$P_{LL_Pedestrion_LF} \coloneqq P_{LL_Pedestrion} \cdot W_J = 360 \cdot \frac{\textit{lbf}}{\textit{ft}}$	Pedestrian Live Load per foot of joist
$\mathcal{L}_{LL_LHS20} \coloneqq 16.kip.$	HS20 Live Load for (1) wheel, AASHTO Standard Specs for Highway Bridges, 17th Edition

Structural Analysis of New Bedford State Pier Roll-on Roll-off Ramp

BY: <u>AVR_DATE: 9/19/24</u> CHK: <u>CJS_</u>DATE: 9/20/24

$\phi_v \coloneqq 0.75$	Shear Capacity reduction factor
$x_{HS20} \coloneqq 6 \; m{ft}$	HS20 wheel spacing
Section B: Load Ratings	
Grating	
$\mathcal{N}_{Grating} = 41.21 \; extbf{psf}$	Grating weight for 6"x3/8" bearing bar grating, <i>Indiana Gratings Inc.</i>
$P_{DL_Grating} \coloneqq F_{DL} \cdot W_{Grating} = 49.452 \; \textit{psf}$	Grating self weight
$D_{Allow_HS20} \coloneqq 96 \ in$	Max distance between spans that grating can support HS20 loading, <i>Indiana Gratings Inc.</i>
$D_{Allow_HS20_Reduced} \coloneqq D_{Allow_HS20} \cdot 0.67 = 5.36 \ ft$	Reduction of allowable span based on bearing bar spacing
$FS_{Grating} := \frac{D_{Allow_HS20_Reduced}}{W_J} = 1.34$	Factor of Safety
$Check = \text{if } (FS_{Grating} > 1.2 \text{ , "OK" , "NG"}) = \text{"OK"}$	
Joists Known Values	Weight of W21X93 Joist, AISC Table 3.2
$W_{Joust} = 93 \text{ plf}$ $Z_{z,Joust} = 221 \text{ in}^3$	Plastic section modulus about the x-axis, AISC Table 3.2
12 Jose - 221 06	
$\gamma_{c,Ionst} = 1.84 \text{ in}$	Radius of Gyration about the y- axis, AISC Table 1.1
$J_{Joint} = 6.03 \ in^4$	Torsional Constant, AISC Table 1.1
:=1	Constant for doubly symmetric shapes, AISC Equation F2-8a
$h_{o_Joist} \coloneqq 20.7~in$	Distance between flange centroids, AISC Table 1.1
$S_{x\ forst} \coloneqq 192\ in^3$	Elastic modulus about the x-axis, AISC Table 1.1
$r_{ts_Jonst} = 2.24$ in	Effective radius of gyration, AISC Table 1.1

 $b_{f_Jorst} = 8.42 \ in$

Bending modification factor, AISC

Flange Width, AISC Table 1-1

Table 3-1

Structural Analysis of BY: <u>AVR DATE: 9/19/24</u> New Bedford State Pier Roll-on Roll-off Ramp CHK: <u>CJS_DATE: 9/20/24</u>

$t_{f_Joset} \coloneqq 0.930 \ in$	Flange Thickness, AISC Table 1-1
$h_{w_/osst} = 18.375 \ in$	Clear distance between flanges, AISC Chapter 1.1
$t_{w_Jorst}\coloneqq 0.580~in$	Thickness of the web, AISC Chapter 1.1
Determine Section Classification	
$\lambda_{y,',J_{cost}} := 0.38 \cdot \sqrt[3]{\frac{E}{f_u}} = 10.785$	Flange Lower limit of Limiting Width-to-Thickness Ratio for
La dei a cara de la company	Flange, AISC Table B4.1(b)
$Ratio_{Flangs_Joss} := \frac{b_{f_Joist}}{2} = 4.527$	Flange Width-to-Thickness Ratio
$Check := \mathbf{if} \left(Ratio_{Flange_Jorst} < \lambda_{pf_Jorst}, \text{"Compact in Flange"}, \text{"Check} \right)$	neck Upper Limit") = "Compact in Flange"
$\lambda_{pw_Jorst} \coloneqq 3.76 \cdot \sqrt[2]{rac{E}{f_y}} = 106.717$	Web Lower limit of Limiting Width- to-Thickness Ratio for Web, AISC Table B4.1(b)
$Ratio_{Web_Joset} := \frac{h_{w_Joset}}{t_{w_Joset}} = 31.681$	Web Width-to-Thickness Ratio
$\overline{Check} \coloneqq \text{if } \left(Ratio_{Web_Joset}, \text{``Compact in Web''}, \text{``Check} \right)$ $\underline{Determine \ Allowable \ Moment}$	Limiting laterally unbraced length
$\mathcal{L}_{p_Jors} := 1.76 \cdot r_{y_Jorst} \cdot \sqrt[2]{\frac{E}{f_y}} = 7.659 \text{ft}$	for yielding, AISC Equation F2-5 Limiting laterally
$L_{r_Joist} \coloneqq 1.95 \cdot r_{ts_Joist} \cdot \frac{E}{0.7 f_y} \cdot \sqrt[3]{\frac{J_{Joist} \cdot c}{S_{x_Joist} \cdot h_{o_Joist}}} + \sqrt[3]{\frac{J_{Joist} \cdot c}{S_{x_Joist} \cdot h}}$	$\left(\frac{\mathbf{c}}{I_{0_{o},J_{0_{o}+1}}}\right)^{2}+6.76 \cdot \left(\frac{\left(0.7 \cdot f_{y}\right)}{E}\right)^{2}=27.272 \ \text{ft}$ unbraced length for LTB, AISC Equation F2-6
$\widehat{Check}:=\mathbf{if}\left\langle L_{J}\!\leq\!L_{p_Joist}, ext{"LTB does not apply", "LTB applies"} ight angle$	= "LTB applies"
$\underline{Check} \coloneqq \mathbf{if} \left\langle L_{p_Joist} < L_J < L_{r_Joist} \right\rangle, \text{``Use Equation F22"}, \text{``Use Equation F22"}, \text{``Use Equation F22"}$	quation $F2-3$ ") = "Use Equation $F2-2$ "
$M_{ extit{p_Joset}} \coloneqq f_y \cdot Z_{x_Joset} = 663 \; extit{kip \cdot ft}$	Plastic moment, AISC Chapter F2.1
$M_{n_Yield_Jois}$:= M_{p_Joist} = 663 $kip \cdot ft$	Nominal flexural strength in yielding
$M_{:,_LTB_Joist} \coloneqq C_{B_Joist} \cdot \left(M_{p_Joist} - \left(M_{p_Joist} - 0.7 \cdot f_y \cdot S_{z_Joist} \right) \left(\overline{L_r} \right) \right)$	$\frac{L_J - L_{p_Joist}}{L_{Joist} - L_{p_Joist}} = 768.662 \ \textit{kip} \cdot \textit{ft}$
$\overline{Check} := \text{if } \langle M_{n_Yield_Jois!} < M_{n_ITB_Jois!}, \text{"Yielding Controls"}, \text{"L'}$	TB Controls") = "Yielding Controls"
$\phi_b M_{n_Josst} := \phi_b \cdot M_{n_Y:eld_Joset} = 596.7 \ kip \cdot ft$	Reduced Nominal Flexural Strength

BY: <u>AVR</u> DATE: <u>9/19/24</u> CHK: <u>CJS</u> DATE<u>:9/20/24</u>

Determine Allowable Shear	
$A_{W\ Joset} \coloneqq 11.45\ in^2$	Area of the web, AISC Table 1.1
h/t _w :=32.3	Compact Section Criteria, AISC Table 1.1
Joist meets compact section criteria of $h/t_w \le 2.24 \cdot \sqrt{\frac{E}{f_w}}$	Constants, AISC G2.1(a)
$\therefore \ \phi_{v_Jots!} = 1.00$	
$k_v \coloneqq 5$	Constant, AISC Chapter G.2
Beam meets compact section criteria of $h/t_w \le 1.10 \cdot \sqrt[3]{k_w \cdot \frac{E}{f_y}}$	AISC G2.1(b)
$C_{o_Joset} := 1.0$	7100 02.1(0)
$V_{n_Joss^{\pm}} \coloneqq 0.6 \cdot f_y \cdot A_{W_Joss^{\pm}} \cdot C_{v_Joss^{\pm}} = 247.32 \ kip$	Nominal Shear Strength, AISC Equation G2-1
$\phi_v V_{n_Jost} \coloneqq \phi_{v_Joist} \cdot V_{n_Joist} = 247.32 \ kip$	Reduced Nominal Shear Strength
Determine Maximum Moment and Shear Loadings	
$P_{DL_Jorst} := P_{DL_Grating} \cdot A_{Grating} + F_{DL} \cdot (W_{Jorst} \cdot L_J) = 4.254 \ kip$	Dead Load as a point force
Assume pedestrian and HS-20 load center of the joist for maximu	
Scenario 1 - Pedestrian Loading	
$P_{LL_Jorst_P} := F_{LL} \cdot (P_{LL_Pedestrian_LF} \cdot L_J) = 7.92 \ kip$	Pedestrian Live Load as a point force
$P_{Load_Josel_P} := P_{DL_Josel} + P_{LL_Josel_P} = 12.174 \ kip$	Pedestrian Total Loading
$M_{\mathcal{M}ax_Jose_F} := \frac{P_{Load_Jose_F} \cdot L_J}{4} = 41.849 \; kip \cdot ft$	Maximum moment, AISC Table 3-23.7
$FS_{M_Joist_P} := \frac{\phi_b M_{a_Joist}}{M_{Max_Joist_P}} = 14.258$	Factor of Safety in Moment
Check := if $(PS_{M,Joint,F} > 1.2, "OK", "NG") = "OK"$	
$V_{Mew_F} \coloneqq \frac{P_{Load_Jewt_P}}{2} = 6.087 \ kip$	Maximum Shear Force, AISC Table 3-23.7
$FS_{V_Jo^*e^t_P} = \frac{\phi_v V_{n_Jo_{w^*}}}{V_{Mox_J^*}} = 40.63$	Factor of Safety in Shear
Check:= if $(FS_{Y,food}, p > 1.2, \text{"OK"}, \text{"NG"}) = \text{"OK"}$	
Scenario 2 - HS-20 Loading	
$P_{LL_Joust_HS20} \coloneqq F_{LL} \cdot \left\langle P_{LL_HS20} \right\rangle = 25.6 \; kip$	HS20 Live Load
	LICENTALL and
$P_{Loud_Jo:st_HS20} = P_{DL_Jo:st} + P_{LL_Jo:st_HS20} = 29.854 \text{ kip}$	HS20 Total Load
$M_{Max_Josst_HS20} \coloneqq rac{P_{Load_Josst_HS20} \cdot L_J}{4} = 102.624 \; m{kip \cdot ft}$	Maximum moment, AISC Table 3-23.7

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS</u> DATE: 9/20/24

$FS_{M_Joist_HS20} := \frac{\phi_b M_{n_Joist}}{M_{Max_Joist_HS20}} = 5.814$	Factor of Safety in Moment
$\overline{Check} := \mathbf{if} \left(FS_{M,Joint,P} > 1.2, \text{"OK", "NG"} \right) = \text{"OK"}$	
$V_{Max_HS20} = \frac{P_{Load_Joist_HS20}}{2} = 14.927 \; kip$	Maximum Shear Force, AISC Table 3-23.7
$ES_{V_Jo\cdot r_HS26} := \frac{\phi(V_{s_Jout})}{V_{Maz_HS26}} = 16.568$	Factor of Safety in Shear
Theck = if $(ES_{V_{abst},HS20} > 1.2, \text{"OK"}, \text{"NG"}) = \text{"OK"}$	
Beams	
Known Values	
$W_{Beam} = 130 \frac{lbf}{ft}$	Weight of W33x130 Beam
$L_{B_Mobraced} \coloneqq 4 \; ft$	Unbraced length of beam
$Z_{x_{Bezm}} \coloneqq 467 \; m{in}^3$	Plastic Section Modulus about the x-axis, AISC Table 1.1
$r_{y_{Beam}}\coloneqq 2.39~in$	Radius of Gyration about the y-axis, AISC Table 1.1
$J_{Bevm} = 7.37 in^4$	Torsional Constant, AISC Table 1.1
$c_{\mathcal{B}ean} \coloneqq 1$	Constant for doubly symmetric shapes, AISC Equation F2-8a
$h_{o_{Beam}}\coloneqq 32.2$ in	Elastic Modulus about the x-axis, AISC Table 1.1
$b_{f_Beavm}\coloneqq 11.5~in$	Flange Width, AISC Table 1.1
$t_{f_Bearn} \coloneqq 0.855 \ in$	Flange Thickness, AISC Table 1.1
$h_{w_Beam} \coloneqq 28.875~in$	Distance between Flanges, AISC Table 1.1
$t_{w_Beam}\coloneqq 0.580~in$	Web thickness, AISC Table 1.1
Determine Section Classification	
$S_{x_Beam}\!\coloneqq\!406~in^3$	Elastic modulus about the x-axis, AISC Table 1.1
$r_{ls_Ream} \coloneqq 2.94 \ \dot{m}$	Effective Radius of Gyration, AISC Table 1.1
$\lambda_{p^{t},Beam} := 0.38 \cdot \sqrt[2]{\frac{E}{f_{y}}} = 10.785$	Flange Lower limit of Limiting Width-to- Thickness Ratio for Flange, AISC Table B4.1(b)

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS</u> DATE: 9/20/24

$Ratio_{Flange\ Beam} := \frac{b_{f_Beam}}{2} = 6.725$	Flange Width-to-Thickness Ratio
$latio_{Flange}$ Beam $= {t_{f_{Beam}}} = 6.725$	rlange widdi-to-thickness Nado
$\widehat{Check}:= \mathbf{if}\left(Ratio_{Flange_Beam} < \lambda_{pf_Beam}, \text{``Compact in Flange''}, \right)$	"Check Upper Limit") = "Compact in Flange"
$\frac{1}{2}\sqrt{E}$	Web Louise limit of Limiting Width to-
$\sum_{pv^* Beam} = 3.76 \cdot \sqrt[2]{\frac{E}{f_y}} = 106.717$	Web Lower limit of Limiting Width-to- Thickness Ratio for Web, AISC Table B4.1(b)
$Ratio_{Web_Beam} := \frac{h_{w_Beam}}{t_{w_Beam}} = 49.784$	Web Width-to-Thickness Ratio
$\overline{Check} := \mathbf{if} \left(Ratio_{Web_Beam} < \lambda_{pw_Beam}, \text{``Compact in Web''}, \text{``E} \right)$	xceeds Upper Limit") = "Compact in Web"
5 1 - 5 1 -	
Determine Allowable Moment	
$L_{p_Beam} \coloneqq 1.76 \cdot r_{y_Beam} \cdot \sqrt[4]{rac{E}{f_y}} = 9.949 \ ft$	Limiting laterally unbraced length for yielding, AISC Equation F2-5
$\widehat{Check} := \mathbf{if} \left(L_{B_Unbraced} \le L_{p_Beam}, \text{``LTB does not apply''}, \text{``LTB'} \right)$	B applies") = "LTB does not apply"
$M_{ extit{p_Beam}} \coloneqq f_y \cdot Z_{ extit{x_Beam}} = \left(1.401 \cdot 10^3\right) \ extit{kip · ft}$	Plastic moment, AISC Chapter F2.1
$M_{n_Yield_Beam} \coloneqq M_{p_Beam} = \left(1.401 \cdot 10^3\right) kip \cdot ft$	Nominal flexural strength
$\phi_b M_{n_Beam} \coloneqq \phi_b \cdot M_{n_Y\cdot eid_Beam} = \left(1.261 \cdot 10^3\right) \ kip \cdot ft$	Reduced nominal flexural strength
Determine Allowable Shear	
$A_{W_Beari} \coloneqq 18.21 \; \mathbf{in}^2$	Area of the web, AISC Table 1.1
h/t _w :=51.7	Compact Section Criteria, AISC Table 1.1
Beam meets compact section criteria of $h/t_w \leq 2.24 \cdot \sqrt{rac{F}{f}}$	AISC G2.1(a)
$\therefore \phi_{v_Beam} = 1.00$	
€,;:= 5	Constant, AISC Chapter G.2
Beam meets compact section criteria of $h/t_w \le 1.10 \cdot \sqrt[2]{k}$	$\frac{E}{f_{\mu}}$ Constant, AISC G2.1(b)
$\therefore C_{u_Beam} \coloneqq 1.0$	Constant, AISC G2.1(D)
$V_{n_Beam} \coloneqq 0.6 \cdot f_y \cdot A_{W_Beam} \cdot C_{v_Beam} = 393.336 \text{ kip}$	Nominal Shear Strength, AISC Equation G2-1
$\phi_v V_{n_Beam} = \phi_{v_Beam} \cdot V_{n_Beam} = 393.336 \ kip$	Reduced Nominal Shear Strength
Determine Maximum Moment and Shear Loadings	
$P_{DL_Beam_Self} = F_{DL} \cdot W_{Beam} = 156 \frac{lbf}{ft}$	Self weight dead load acting on the beam as a distributed force

point force

 $P_{DL_Beam_Self_Point} \coloneqq P_{DL_Beam_Self} \cdot L_B = 3.12 \ \textit{kip}$

Self weight dead load acting as a

BY: AVR DATE: 9/19/24 CHK: CJS DATE:9/20/24

Assume the one wheel from the HS20 load is located at center of floorbeam and other wheel is offset 6'

$$P_{LL_HS20_Beam}\!\coloneqq\!F_{LL}\!\cdot\!P_{LL_HS20}\!=\!25.6~\textit{kip}$$

Live load

$$R_{1} \coloneqq \frac{\left(\left\langle P_{DL_Joist} \cdot 2 \ ft \right\rangle + \left\langle P_{DL_Joist} \cdot 6 \ ft \right\rangle + \left\langle P_{DL_Joist} \cdot 10 \ ft \right\rangle + \left\langle P_{DL_Joist} \cdot 14 \ ft \right\rangle}{+ \left\langle P_{DL_Joist} \cdot 18 \ ft \right\rangle + \left\langle P_{LL_HS20_Bears} \cdot 10 \ ft \right\rangle + \left\langle P_{LL_HS20_Bears} \cdot 16 \ ft \right\rangle}{20 \ ft} = 43.916 \ \textit{kip}$$

$$R_2 \coloneqq \left(P_{DL_Joist} \cdot 5\right) + \left(2 \cdot P_{LL_HS20_Beam}\right) - R_1 = 28.556 \; \textit{kip}$$

Reaction Forces

Shear = 0 at center of beam, therefore this is max moment

$$\begin{split} M_{Max_Beam} \coloneqq & \left(P_{DL_Beam_Self} \cdot \frac{L_B}{2} \cdot \frac{L_B}{4} \right) + \left(P_{LL_HS20_Beam} \cdot \frac{L_B}{2} \right) + \left(P_{DL_Joist} \cdot 2 \ \textit{ft} \right) \ \bot = 340.378 \ \textit{ft} \cdot \textit{kip} \\ & + \left(P_{DL_Joist} \cdot 6 \ \textit{ft} \right) + \left(P_{DL_Joist} \cdot \frac{L_B}{2} \right) \end{split}$$
 Maximum moment acting on beam

$$V_{Max_Beam} \coloneqq R_1 = 43.916 \ kip$$

Maximum shear force acting on beam

$$FS_{\textit{Beam_M}} \coloneqq \frac{\phi_b M_{\textit{B_Beam}}}{M_{\textit{Mox_Beam}}} = 3.704$$

Factor of safety in moment

$$FS_{Beam_V} := \frac{\phi_{*}V_{n_Beam}}{V_{Max_Beam}} = 8.957$$

Factor of safety in shear

Check := if (FS Boom, M > 1.2, "OK", "NG") = "OK"

$$Check \coloneqq \mathbf{if}\left(FS_{Fam.\,\downarrow} > 1.2\,, \text{``OK''}\,, \text{``NG''}\right) = \text{``OK''}$$

The beams are capable of supporting vehicles and pedestrian loads

Girders

Known Values

 $b_{f Gurder} := 2 ft$

Width of the flange

 $t_{\text{f-Gwder}} \coloneqq 1.75 \ \text{in}$

Thickness of the flange

 $b_{\text{w_Gurder}} \coloneqq 6 \; \textit{ft}$

Width of the web

 $t_{w_Girder} \coloneqq 0.5 \ \textit{in}$

Thickness of the web

 $h_{\mathit{Girder}} \coloneqq t_{f_\mathit{Girder}} + b_{w_\mathit{Girder}} = 6.146~\mathit{ft}$

Total length of beam

 I_{y_Gir}

 $L_{b_Unbraced_Garder} \coloneqq 13.75 \ \textit{ft}$

Unbraced girder length

Calculated Characteristics

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS DATE:9/20/24</u>

$\frac{b_{f,Garder} \cdot (b_{w,Garder} + 2 \cdot t_{f,Garder})^{w}}{12} $	Moment of inertia about
$(b_{f_Gurder} - t_{w_Gurder}) \cdot ((b_{w_Gurder} + 2 \cdot t_{f_Gurder}) - (2 \cdot t_{w_Gurder})$	the weak axis
12	
(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cross soctional area
$A_{Girder} := 2 \cdot \left(t_{f_Girder} \cdot b_{f_Girder} \right) + \left(b_{w_Girder} \cdot t_{w_Girder} \right) = 0.833 \ \text{ft}^{2}$	Cross-sectional area
2 II gurder on and the	Radius of gyration about
$r_{y_Garder} = \sqrt[2]{rac{I_{y_Garder}}{A_{Garder}}} = 20.611$ in	the weak axis
1 Same	The French date
Lorenza	
$S_{\pm,Gorder} = \frac{I_{\gamma,Gorder}}{\frac{1}{2} \cdot h_{Gorder}} = 5.985 \ gal.$	Elastic section modulus about the
-2 · hGwder	weak axis
$A_f = t_{f_Gwder} \cdot b_{f_Gwder} = 42 \text{ in}^2$	Flange Area
	Mark Asset
$A_w = t_{w_Grder} \cdot b_{w_Grder} = 36 \text{ in}^2$:Web Area
bt Garden	Flance Control d
$y_f = b_{\omega_Girder} + \frac{t_{f_Girder}}{2} = 72.875.in$.Flange Centroid
b. a.te	Mak Cashaid
$y_{\omega} = \frac{b_{\omega_{\omega}} y_{\omega}}{2} = 36 in$	_Web Centroid
$A_t \cdot y_t + A_w \cdot y_w$	Neutral Axis location
$y_{NA} := \frac{A_f \cdot y_f + A_w \cdot y_w}{A_f + A_w} = 55.856 \text{ in}$, Nediral Axis location
4 / /	Upper web area
$A_{w1} \coloneqq \left(b_{w_Gurder} = y_{NA} ight) \cdot t_{w_Gurder} = 8.072 \text{ in }^2$	opportanta area 1
$d_{wi} = \frac{b_{\omega,Girder} - y_{NA}}{2} = 8.072 \text{ in}$	Distance from neutral axis to
2	uppwer web centroid
$A_{w2} := y_{NA} \cdot t_{w}$ Girde = 27.928 in^2	Lower Web Area
$d_{w3} := \frac{y_{NA}}{2} = 27.928 \text{ in}.$	Distance from neutral axis to lower
2	web centroid
$Z_{f_Grrdor} := A_{f^{\circ r}}(y_f = y_{NA}) = 3.094 \ gal \dots$	Flange plastic section modulus
Transfer (9) - 9 VA)	
$Z_{w1} = A_{w1} \cdot d_{w1} = 0.282 \ gal$	Upper web plastic section modulus
ישרי אשר אשר אשר אושר אושר אושר אושר אושר או	
$Z_{m2} := A_{m2} \circ d_{m2} = 3.376 \ gal$	Lower web plastic section modulus
$Z_x = Z_{f_Gwder} + Z_{w1} + Z_{w2} = 6.753$ gal	Total plastic section modulus
etermine Section Classification	
2 E	Flance Levine light for Middle to
$f_{y} = 0.38 \cdot \sqrt{\frac{E}{f_{y}}} = 10.785$	Flange Lower limit for Width-to- Thickness Ratio
	I III II I I I I I I I I I I I I I I I
D_{f_Bearn}	

$\underline{\operatorname{reck}} := \operatorname{lf}\left(Ratio_{Flange_Girder} < \lambda_{pf_Girder}, \text{"Compact in Flang}\right)$	
our_Girder := $3.76 \cdot \sqrt[3]{\frac{E}{f_y}} = 106.717$	Web Lower limit of Limiting Width-to- Thickness Ratio, <i>Table B4-1b</i>
$atio_{Web_Gerder} \coloneqq \frac{b_{w_Gerder}}{t_{w_Gerder}} = 144$	Web Width-to-Thickness Ratio
$\frac{1}{\text{neck}} := \mathbf{If} \left(Ratio_{Web_Girder} < \lambda_{pw_Girder}, \text{"Compact in Web"} \right),$	"Exceeds Lower Limit") = "Exceeds Lower Limit"
$w_{\text{-Gorder}} := 5.70 \cdot \sqrt[4]{\frac{E}{f_y}} = 161.779$.	Web Upper limit of Limiting Width-to- Thickness Ratio, <i>Table B4-1b</i>
$heck = \text{if } (Ratio_{Web_Girder} < \lambda_{vw_Girder}, \text{``Noncompact in We})$	b", "Slender in Web") = "Noncompact in Web"
$p_{_Gorder} := 1.76 \ ext{ty}_{_Gorder} \cdot \sqrt{\frac{E}{f_y}} = 85.8 \ ft$	Lower.limit of limiting length
$\overline{heck} \coloneqq \mathbf{if}\left(L_{b_Unbraced_Girder} < L_{p_Girder}, \text{``LTB does not apply} ight)$	", "LTB is applicable") = "LTB does not apply"
	", "LTB is applicable") = "LTB does not apply"
etermine Allowable Moment	", "LTB is applicable") = "LTB does not apply" Moment of intertia of the compression flange about the y-axis
The chief if $(L_{b_Unbraced_Girder} < L_{p_Girder}, \text{``LTB does not apply})$ betermine Allowable Moment $p_c := \frac{t_{f_Girder} \cdot b_{f_Girder}}{12} = (2.016 \cdot 10^3) \text{ in }^4$ The chief is if $\left(\frac{I_{yc}}{I_{y_Girder}} < 0.23, \text{``Use Eqn F4.2(c)(6)(ii)''}, \text{``Use}\right)$	Moment of intertia of the compression flange about the y-axis
Determine Allowable Moment $ \frac{t_{f_Girder} \cdot b_{f_Girder}^3}{12} = \left(2.016 \cdot 10^3\right) in^4 $ The chief if $ \frac{I_{yc}}{I_{y_Girder}} < 0.23 , \text{``Use Eqn F4.2(c)(6)(ii)''} , \text{``Use Eqn F4.2(c)(6)(ii)'''} , \text{``Use Eqn F4.2(c)(6)(ii)''} , \text{``Use Eqn F4.2(c)(6)(6)(ii)''} , ``Use Eqn F4.2(c)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)($	Moment of intertia of the compression flange about the y-axis
Determine Allowable Moment $c_{pc} := \frac{t_{f_Girder} \cdot b_{f_Girder}}{12} = (2.016 \cdot 10^3) \text{ in }^4$	Moment of intertia of the compression flange about the y-axis Eqn F4.2(c)(6)(i)" = "Use Eqn F4.2(c)(6)(ii)" Web plastification factor,
retermine Allowable Moment $\mathbf{r} := \frac{t_{f_Girder} \cdot b_{f_Girder}^{3}}{12} = (2.016 \cdot 10^{3}) \ in^{4}$ $\mathbf{r} := \mathbf{if} \left(\frac{I_{yc}}{I_{y_Girder}} < 0.23 \right), \text{ "Use Eqn F4.2(c)(6)(ii)"}, \text{ "Use Problem F4.2} \right)$	Moment of intertia of the compression flange about the y-axis Eqn F4.2(c)(6)(i)" = "Use Eqn F4.2(c)(6)(ii)" Web plastification factor, AISC F4.2(c)(6)(ii) Moment of intertia of the
etermine Allowable Moment $ \mathbf{E} := \frac{t_{f_Girder} \cdot b_{f_Girder}^{2}}{12} = (2.016 \cdot 10^{3}) \text{ in }^{4} $ $ \mathbf{E} := \mathbf{if} \left(\frac{I_{yc}}{I_{y_Girder}} < 0.23, \text{"Use Eqn F4.2(c)(6)(ii)", "Use} \right) $ $ \mathbf{E} := \frac{b_{f_Girder} \cdot t_{f_Girder}^{2}}{12} + A_{f} \cdot y_{f}^{2} = (2.231 \cdot 10^{5}) \text{ in }^{4} $	Moment of intertia of the compression flange about the y-axis Eqn F4.2(c)(6)(i)" = "Use Eqn F4.2(c)(6)(ii)" Web plastification factor, AISC F4.2(c)(6)(ii) Moment of intertia of the compression flange about the x-axis Elastic section modulus referred to

Determine Allowable Shear

a = 13 ft

$$k_{v_Gwder} := 5 + \frac{5}{\left(\frac{a}{b_{v_{o}_Gwder}}\right)} = 6.065$$

_Distance between transverse stiffeners

Constant, AISC Equation G2-5

$$\underbrace{\overline{ChecR}}_{::= \text{ if }} \left(\frac{b_{w_Garder}}{t_{to_Garder}} < 1.10 \cdot \sqrt[3]{k_w \cdot \frac{E}{f_y}}, \text{ "Use Eqn G2-3", "Use Eqn G2-4"} \right) = \text{"Use Eqn G2-4"}$$

 $\phi_b M_{n_Garder} := \phi_b \cdot M_{n_Garder} = (3.539 \cdot 10^4) \ \text{ft} \cdot \text{kip}$ Reduced nominal flexural moment

$1.10, \sqrt{k}, \frac{E}{}$	
$C_{v_{\underline{w}} : \text{Swider}} \coloneqq \frac{1.10 \cdot \sqrt[3]{k_{\underline{w}} \cdot \frac{E}{f_{\underline{y}}}}}{\underline{b_{\underline{w}_Grider}}} = 0.485$	Constant, AISC Equation G2-4
$t_{w.Garder}$	
$V_{\pi} \coloneqq 0.6 \cdot f_{y} \cdot A_{w} \cdot C_{v_\text{Girder}} = 376.981 \; \textit{kip}$	Nominal shear strength, AISC Equation G2-1
$\phi_v V_{n_Garder} := \phi_v \cdot V_n = 282.736 \ kip$	Reduced nominal shear strength
Determine Maxmium Moment and Shear Loadings	
$P_{DL_Garder_Self} \coloneqq F_{DL} \cdot \left(A_{Garder} \cdot \gamma_S \right) = 490.752 \frac{lbf}{ft}$	Dead load of the girder's weight acting as a distributed load
$P_{DL_Beams} := \frac{\left(P_{DL_Beam_Sclf_Point} + P_{DL_Jour}\right)}{2} = 3.687 \ kip$	Dead loads from the above members (Halved for one girder)
$P_{LL_HS20_Gwder}\!\coloneqq\!F_{LL}\!\cdot\!P_{LL_HS20}\!\cdot\!3\!=\!76.8~kip$	Assume 3 wheel loads per girder
$R_{Girder-West} = \begin{bmatrix} -34.25 \cdot P_{LL_HS20_Girder} - 41.15 \cdot P_{DL_Beams} \\ -55.25 \cdot P_{DL_Beams} - 69 \cdot P_{DL_Beams} \\ -82.75 \cdot P_{DL_Beams} \end{bmatrix}$	$\begin{array}{c c} -48.5 \cdot P_{LL_HS20_Girder} \neq \\ & \text{at abutment by taking} \\ & \text{moment about hoists} \\ & = 106.266 \ \textit{kip} \end{array}$
$R_{Girder_Weet} = \frac{83}{R_{Girder_East}} := 2 \cdot \left(\frac{P_{DL_Beams}}{2}\right) + 7 \cdot \left(P_{DL_Beams}\right) + \left(P_{DL_Girder_Self} \cdot \frac{1}{2}\right) + \frac{1}{2} \cdot \left(\frac{1}{2}\right) \cdot \frac{1}{2} \cdot$	L_{Gorder} , $J=131.795~kip$ Vertical reaction force
$+\left(2\cdot P_{LL_HS20_G:rder} ight)-R_{G:rder_West}$	at hoists
$\begin{split} M_{\textit{Max_Girder}} &\coloneqq - \left(7 \ \textit{ft} \cdot P_{\textit{DL_HS26}}\right) - \left(157.25 \ \textit{ft} \cdot P_{\textit{DL_Beams}}\right) \ \bot \\ &- \left(35.25 \ \textit{ft} \cdot P_{\textit{DL_Garder_Self}} \cdot L_{\textit{Garder}}\right) + \left(42 \ \textit{ft} \cdot R_{\textit{Garder}}\right) \end{split}$	$= (2.906 \cdot .10^3) \text{ ft. kM} \text{aximum moment}$ $= \text{acting on girder}$
$V_{Max_Grrder} \coloneqq R_{Grrder_East} = 131.795 \; kip$	Maximum shear force acting on girder
$FS_{Gurder_M} \coloneqq \frac{\phi_b M_{n_Gurder}}{M_{Mor_Gurder}} = 12.177$	Factor of safety in moment
$\label{eq:Check} \begin{split} &Check = if\left(FS_{Gorder,M}\!>\!1.2, \text{"OK"}, \text{"NG"}\right) = \text{"OK"} \end{split}$	
$FS_{Gtrder_V} \coloneqq \frac{\phi_{\pi} V_{\pi_Gtrder}}{V_{Max_Gtrder}} = 2.145$	Factor of safety in shear
Check:= if $(FS_{Greder, \mathcal{V}} > 1.2, \text{"OK"}, \text{"NG"}) = \text{"OK"}$	

The girders can support both pedestrian and vehicle loads

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS</u> DATE: 9/20/24

Ρi	les
ш	15-3

Piles consists of 16" diameter, concrete filled pipe piles with a capacity of 60 tons per as-built drawings

Det	ermine	Allowa	ble Ax	ial Com	pression
,	0.0				

$$\phi_c := 0.9$$

 $P_n \coloneqq 120 \text{ kip}$

 $\phi_c P_n := \phi_c \cdot P_n = 108 \text{ kip}$

 $P_{n,Poles,Potol,Abatment} := 7 \cdot \phi_c P_n = 756 \ kip$

 $P_{n_Pites_Total_Ho:st} \coloneqq 4 \cdot \phi_c P_n = 432 \ \textit{kip}$

Assume piles have 90% of their

capacity remaining

Design capacity of piles per as-built drawings

Allowable compression

strength per pile

Total resistance from (7) piles at abutment

Total resistance from (4) piles at hoist

Weight of the abutment,

as-built drawings

Determine Axial Loadings

Abutment Weight

Lupper Segment := 29 ft

 $w_{Upper_Segment} := 3 \ ft$

 $H_{Upper_Segment} := 3.917 \ ft$

 $V_{Upper_Segment} \coloneqq L_{Upper_Segment} \cdot w_{Upper_Segment} \cdot H_{Upper_Segment} = \left(2.549 \cdot 10^{3}\right) \; \textit{gal}$

 $L_{Lower Segment} = 29 \, ft$

 $w_{Lower_Segment} := 6.5 \ ft$

 $H_{Lower : Segment} := 8.208 \ ft$

 $V_{Lower_Segment} \coloneqq L_{Lower_Segment} \cdot w_{Lower_Segment} \cdot H_{Lower_Segment} = \left(1.157 \cdot 10^4\right) \; \textit{gal}$

 $V_{Abutment\ Total} := V_{Upper\ Seament} + V_{Lower\ Seament} = (1.412 \cdot 10^4)$ gal

 $W_{Abutment_Total} = V_{Abutment_Total} \cdot \gamma_C = 283.198 \ kip$

Ramp Weight

 $A_{grating} := (112 - 4.75) \, \text{ft} \cdot 26 \, \text{ft} = (2.789 \cdot 10^3) \, \text{ft}^2$

Total area of the grating

 $W_{Grating_Total} := W_{Grating} \cdot A_{grating} = 114.914 \ kip$

Total length of 5 joists

 $L_{\textit{Jossis}} \coloneqq 5 \cdot \left(112 - 5.5\right) \textit{ft} = 532.5 \textit{ ft}$

 $W_{Jorsts,Total} \coloneqq W_{Jorst} \cdot L_{Jorsts} = 49.523 \; kip$

Weight of the Joists

 $L_{Beam} = 20 \; ft$

Length of beams

 $W_{\textit{Beam_West}} := 132 \frac{\textit{lbf}}{\textit{ft}}$

W30x132 western beam

 $W_{Beam\ Total} := W_{Beam\ West} \cdot L_{Beam} + 8 \cdot (W_{Beam} \cdot L_{Beam}) = 23.44 \ kip$

Weight of all beams (9 total on ramp)

Weight of the grating, as-built drawings

 $L_{1:eBeam_East} \coloneqq 2 \cdot \left(11 \ \textit{ft} + 13.75 \ \textit{ft} \cdot 3\right) = 104.5 \ \textit{ft}$

Total Length of Tee Beams on eastern side of ramp

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS_DATE:9/20/24</u>

$W_{Girder\ Total} \coloneqq 2 \cdot \left(L_{Girder} \cdot A_{Girder} \cdot \gamma_{S}\right) = 91.607\ kip $ Total $W_{Ramp\ Total} \coloneqq W_{Grating\ Total} + W_{Joiste\ Total} + W_{Beam\ Total} \downarrow = 282.88\ kip $ Total $+ W_{TeeBeam\ East\ Total} + W_{Girder\ Total}$ Weight of Hoist Towers $L_{cap} \coloneqq 12.25\ ft $ Dir $H_{cap} \coloneqq 12.25\ ft $ Dir $H_{cap} \coloneqq 1.42\ ft $ Ho $H_{cap} \coloneqq $	tal Weight of Tee Beams tal Weight of Girders tal Weight of Ramp mensions and Weights of the list Cap, as-built drawings
$W_{Ramp_Total} \coloneqq W_{Grating_Total} + W_{Joists_Total} + W_{Beam_Total} \downarrow = 282.88 \text{ kip} $ $+ W_{TeeBeam_Bast_Total} + W_{Girste_Total}$ $Weight of Hoist Towers$ $V_{cap} \coloneqq 12.25 \text{ ft}$ $V_{cap} \coloneqq 11.42 \text{ ft}$ $H_{cap} \coloneqq 3 \text{ ft}$ $V_{cap} \coloneqq L_{cap} \cdot W_{cap} \cdot H_{cap} = (3.139 \cdot 10^3) \text{ gal}$ $V_{Hoist_cap} \coloneqq V_{cap} \cdot \gamma_O = 62.953 \text{ kip}$	cal Weight of Ramp
$+W_{TeeBeam_East_Total}+W_{Girder_Total}$ $\underbrace{\text{Veight of Hoist Towers}}_{cop} \coloneqq 12.25 \text{ ft.}$ $V_{cop} \coloneqq 11.42 \text{ ft.}$ $I_{cop} \coloneqq 3 \text{ ft.}$ $V_{cap} \coloneqq L_{cap} \cdot W_{cop} \cdot H_{cop} = \left(3.139 \cdot 10^3\right) \text{ gal.}$ $V_{Hoist_cop} \coloneqq V_{cop} \cdot \gamma_O = 62.953 \text{ kip.}$	nensions and Weights of the
$\begin{aligned} & \underbrace{\text{Veight of Hoist Towers}}_{cop} := 12.25 \ \textit{ft}. \\ & \underbrace{\text{V}_{cop} := 11.42 \ \textit{ft}}_{cop} := 3 \ \textit{ft} \end{aligned} \qquad $	
$C_{cop} \coloneqq 12.25 ft$. $C_{cop} \coloneqq 11.42 ft$ $C_{cop} \coloneqq 3 ft$ $C_{cop} \coloneqq L_{cop} \cdot W_{cop} \cdot H_{cop} = \left(3.139 \cdot 10^3\right) gal$ $C_{Houst_cop} \coloneqq V_{cop} \cdot \gamma_C = 62.953 kip$.	
$V_{cop}\coloneqq 11.42\ ft$ Dir Ho $V_{cop}\coloneqq 3\ ft$ Ho $V_{cop}\coloneqq L_{cop}\cdot W_{cop}\cdot H_{cop}=\left(3.139\cdot 10^3\right)\ gal$ $V_{Host_cop}\coloneqq V_{cop}\cdot \gamma_C=62.953\ kip$.	
$I_{cop} \coloneqq 3 \ ft$ Ho $I_{cop} \coloneqq L_{cop} \cdot W_{cop} \cdot H_{cop} = \left(3.139 \cdot 10^3\right) \ gal$ $V_{Houst_cop} \coloneqq V_{cop} \cdot \gamma_C = 62.953 \ kip$	
$egin{align*} V_{cap} \coloneqq L_{cap} \cdot W_{cap} \cdot H_{cop} = \left(3.139 \cdot 10^3 ight) gal \ V_{Horst_cap} \coloneqq V_{cap} \cdot \dot{\gamma}_C = 62.953 kip \ . \end{array}$	
16.4	
$V_{\text{gale_hores}} = 50 \frac{\textbf{lof}}{\textbf{ft}}$	W12x50 Steel Piles
$V_{ongles_horst} := 5.90 \frac{lbf}{ft}$	L3x2x3/8 Angles
$V_{beam_horst} := 12 \frac{lbf}{ft}$	W6x12 Horizontal Beams
$V_{bridge_bar} \coloneqq 41 \frac{lbf}{ft}$	W21x44 Horizontal Beams
$N_{bridge_side} := 135 \frac{lbf}{ft}$	W36x135 Horizontal Beams
	48" Tall counterweight
$W_{count\sigma_weight} \coloneqq 57$ in .57 in .48 in . $\gamma_S = 44.29$ kip	io. Tan coancarvagne
N pile_horst_total := W. pile_horst • 22.13 ft • 4 = 4.426 kip	Total weight for (4) piles 22.13' long
$W_{angles_hoist_total} \coloneqq W_{angles_hoist} : 10 \; \textit{ft} : 24 = 1.416 \; \textit{kip}$	Total weight for (24) angles 10' long
$W_{beam_horst_lotal} \coloneqq W_{beam_horst} \cdot 7 \ \textit{ft} \cdot 12 = 1.008 \ \textit{kip}$	Total Weight for (12) horizontal beams 7' long
$W_{bendge_bor_total} \coloneqq W_{bendge_bur} \cdot 7$ $ft = 0.308$ kip	Total Weight for (1) horizontal bridge bar
$W_{bridge_side_total} \coloneqq W_{bridge_side} \cdot rac{27.5}{2} ft \cdot 2 = 3.713 m{kip}$	Total Weight for half the
	length of (2) bridge side beam, 27.5' long
$W_{Hoist_Fotal} := W_{Hoist_cap} + W_{counter_weight} + W_{pile_hoist_total} \downarrow = 118.114 \ kip$	Total Weight of Hoist
$+W_{angles_hoist_total}+W_{brain_hoist_total} otal otal $	mechanism and cap

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS</u> DATE: 9/20/24

Determine Axial Load on Hoist Piles

$$P_{DL_Hoist_Piles} := F_{DL} \cdot \left(\frac{W_{Ramp_Total}}{4} + W_{Hoist_Total} \right) = 226.6 \ kip$$

Dead load acting on the hoist piles

Pedestrian Loading Scenario

$$P_{LL_Pedestrian_Hoist} \coloneqq F_{LL} \cdot \left(P_{LL_Pedestrian} \cdot \frac{\left(\left(L_{Girder} - 4.75 \ \textit{ft}\right) \cdot L_{Heart}\right)}{4}\right) = 77.22 \ \textit{kip}$$

Pedestrian loading on (1/4) of the ramp

$$P_{Hoist_Pedestrian_Ivtal} \coloneqq P_{DL_Hoist_Piles} + P_{LL_Pedestrian_Hoist} = 303.82 \; kip$$

Total Loading

$$FS_{Hoist_Piles_Pedestrion} \coloneqq \frac{P_{n_Piles_Total_Hoist}}{P_{Hoist_Pedestrion_Total}} = 1.422.$$

Factor of Safety

$$\widehat{Check} \coloneqq \text{if } \left(FS_{Hout, Poles Polestrian} > 1.2 \text{ , "OK", "NG"} \right) = \text{"OK"}$$

HS-20 Loading Scenario

$$P_{LL~HS20_Hovst} = F_{LL} \cdot (2 \cdot P_{LL_HS20}) = 51.2 \ kip$$

HS-20 Load from (2) wheels

$$P_{Total_Hoist_HS20} = P_{DL_Houst_Piles} + P_{LL_HS20_Houst} = 277.8 \ kip$$

Total load on the hoist piles

$$FS_{Horst Poles HS20} := \frac{P_{n_{\perp}Poles Total Hoost}}{P_{Total Horst HS20}} = 1.555$$

Factor of Safety

Determine Axial Load on Abutment Piles

$$P_{\mathit{DL_Abutment_Piles}}\!\coloneqq\!F_{\mathit{DL}}\!\cdot\!\left(\!\frac{W_{\mathit{Ramp_Total}}}{2}\!\right)\!=\!169.728\;\mathit{kip}$$

Dead load acting on the

Pedestrian Loading Scenario

$$P_{LL_Pedestrum_HS20} \coloneqq F_{LL} \cdot \left(P_{LL_Pedestrum} \cdot \frac{\left(L_{Girder} - 4.75 \ ft \right) \cdot L_{Bdom}}{2} \right) = 154.44 \ kip$$

Pedestrian loading on (1/2) of the ramp

$$P_{Abutment_Pedestrian_Total} \coloneqq P_{DL_Abutment_Piles} + P_{LL_Pedestrian_HS20} = 324.168 \; kip$$

Total Loading

$$FS_{Abutment_Pdes_Pedestrian} \coloneqq \frac{P_{n_Pdes_Total_Abutment}}{P_{Abutment_Pedestrian_Total}} = 2.332$$

Factor of Safety

HS-20 Loading Scenario

$$P_{LL_HS20_Abutment} \coloneqq F_{LL} \cdot \left(4 \cdot P_{LL_HS20} \right) = 102.4 \ \textit{kip}$$

HS-20 Load from (4) wheels

$$P_{Total_Abutment_HS20} \coloneqq P_{LL_Abutment_Piles} + P_{LL_HS20_Abutment} = 272.128 \ \textit{kip}$$

Total load on the hoist piles

BY: <u>AVR DATE: 9/19/24</u> CHK: <u>CJS</u> DATE: 9/20/24

$heck := if (FS_{Hous_Piles})$	_{HS20} > 1.2, "OK", "N	$ G''\rangle = "OK"$			
	The existing p	iles are capable	of supportin	na HS-20	
	The blocking p	and pedestrial	loads	9	
			War bada		

Inches	0	1.6	2.0-	26"	3.0.	3.6	40	40" 4'-6" 5'-0" 5'-6"	2.0-	5.6	6.0	6:-0- 1:-0-	8.0
1×1/4	1407	928	703	280	469	402			L	2	% Open Area		
1×3/6	2107	1404	1053	843	702	602			88	83	Bearing	7	
1'/4 × 1/4	2183	1462	1097	877	731	827	548		Stre		- 1/4 - 1/4		, a
11/2×3/5	3287	2191	1643	1315	1096	936	822		2,12	2.00			
1'tz × 1/4	3160	2107	1580	1264	1053	903	790	702	e i				74%
11/2 × 5/16	3947	2631	1973	1573	1316	1128	987	228	9		-1		2
41/2×3/4	4740	3160	2370	1866	1560	1354	1185	1053		-			
13/4 × 1/4	4300	2867	2150	1720	1433	1229	1075	926	860				1
13/4 × 3/4	6447	4298	3223	2579	2148	1842	1812	1433	1289		Loads are medicalital, and	on a unit	l, Bend
2×44	5613	3742	2807	2245	1871	1604	1403	1247	1123		of 20,000 psi	製	
2 × 5/16	7020	4680	3510	2608	2340	2006	1755	1560	1404				
2×3/8	8420	5613	4210	3368	2807	2406	2105	1871	1684				
21/4×1/4	7107	4738	3553	2843	2368	2030	1777	1579	1421	1292			
21/4×3/4	10860	7107	\$330	4264	3563	3046	2665	2369	2132	1938			
21/2×1/4	8773	5849	4387	3509	2924	2507	2193	1950	1755	1595	1462		
21/2 × 5/16	10967	7311	5483	4387	3656	3133	2742	2437	2193	1994	1828		
21/2 × 3/8	13160	87778	6580	8264	4387	3760	3290	2924	2632	2393	2193		
3×1/4	12633	0422	6317	5053	4211	3610	3158	2807	2527	2297	2106		
3 × 4/16	15793	10629	7667	6317	9264	4512	3948	3510	3159	2872	2632		
3 × 3/6	18947	12631	6473	7579	6318	9413	4737	4210	3789	3445	3158		
3×1/2	25267	18844	12633	10107	3422	7219	6317	5615	5053	4594	4211		
3'h×1/4	17193	11482	8597	6877	5731	4912	4288	3821	3439	3126	9992	2456	
31/2×3/6	25793	17196	12697	10317	8558	7370	6448	5732	6159	4690	4299	3685	
3'hx 'h	34367	22824	17193	13755	11462	9825	1839	7641	6877	6252	5731	4912	
4×1/4	22480	14973	11230	1964	7487	6417	5815	4891	4492	4084	3743	3209	
4× Fre	28073	18716	14037	11229	9358	8021	7018	6239	5615	5104	4679	4010	
4/c × 4	33687	22458	16643	13475	11229	9625	8422	7486	6737	6125	5614	4812	
4×4/2	44813	29942	22457	17985	14971	12832	11228	9981	8983		7486	6416	
4'tz × 'ta	28420	18947	14210	11368	9473	8120	7105	6316	5584	5167	4737	4050	3653
41/2×3/4	42633	28422	24347	17053	14211	12181	10658	9474	8527	7752	7106	9009	222
4'ta×'ta	56847	37898	28423	22739	18949	16242	14212	12633	11369	10336	9474	8121	7106
5 × 1/4	35093	23396	17547	14037	11688	10027	8773	7799	7019	6381	5849	5013	4387
5 × 5/16	43860	29240	21830	17544	14820	12531	10965	9747	8772	7975	7310	6266	\$483
5 × 3/8	52633	35089	26317	21053	17644	15038	13158	11696	10527	9570	8772	7519	8579
5×3/2		46787	35090	28072	23383	20051	17545	15596	14036	12760	11697	10026	8773
512×1/4		28307	21230	16984	14153	12131	10615	9436	8492		7107	9909	5308
51/2×3/8	0.0	42458	31843	25475	21229	18196	15922	14153	12737	203	10614	8606	7961
512×1/2		58613	42460	33968	28307	24263	21230	18871	16934	15440	14153	12131	10615
6×1/4		33689	25267	20213	16844	14438	-	-	10107		8422	7219	6317
6 × 5/16		42107	31580		21053	16046	_	-	12632		10527	9023	7895
8 × 3/6		50529	37897	30317	25254	21855	18948						
R×1/4			80830	46.64	45489	4000	35268	99466	4444	40000	*****	4444	12633

יצואס מה 1963 burnt of grating width. Bhannay ben 27% כ.כ. Note: Whan serrated grating is specified, the depth of grating required for a specified hosd will be "אר" grader than that shown in these tables.

W21-W18 Torstonal

Table 1-1 (continued)
W-Shapes

Properties

DIMENSIONS AND PROPERTIES

1-20

		Table 1-1 (continue	M. Chonon
	*-	r-	i
d	-		>
	=		,

1 1 11	× , n	<u>'ا</u> ال			-	W-Snapes Dimensions	ens	Dimensions	Ø						
ją.	7	<u> </u>			QQ.			星	Hange				Dietance		
Area,		200	Depth,	Thickness,	age of	7 10	Wnd	Width,	Thickness,	ď.	1	A A A	¥		Work- abto
F.		£		5		Ē	E	10	5		ii.	Ē	=	5	5
27.3		21.8	215/4	215/e D.580	9/18	\$/18	8.42 83/8	83/8	0.830	81/5L	1.43	15/8	15/18	183/4	51/2
24.4	4	21.4	215/6	213/9 0.515	22	ķ	8.38		0.835	13/1E		2	8/,	F	H
21.5	H2 5	21.2	21/4	0,455	718	1/4	8.30		0.740	3	-	17/10	8//		
20.0	0 6	21.0	2	0.430	7.18	7 2	22.0	674	0.685	7/1B	3 5	14/8	13/10	=	_
o to	6.0	20.0	17506	0.40E	8. % %	3,4	8 22	A1/4	0.622	2 2	1 12	13/48	13/18		
4	4	20.6	205/8	0.350	3/8	3/46	8.14	8 8/8	0.430	7/15	0.930		13/16	>	>
100	8.7	21.1	7	0.405	9/8	3/1B	6.56	61/6	0.650	5/8	1.15	15/16	13/16	183/6	3/2
4	14.7	20.8	207/8		3/2	91/2	6.53		0.535	#/e	1.04	11/4	13/1B		-
63	13.0	20.7	205/8		3/6	3/16	6.50	61/2	0.450	T/HB	0.950		13/1B	>	>
-	91.6	22.3	223/8	1.52	11/2	3/4	12.0	12	2.74	23/4	3.24	37/18	13/8	15%	51/2
- 523	83.3	21.9	217/8	1,40	14/8	11/16	11.9	117/8	2.50	21/2	3.00	38/18	16A6	Ξ	-
ш	76.0	21.5	211/2		1/4	8/g		113/4	2.30	25/16	2.70	era.	174		
92	68.6	21.1	2	1.18	13/46	ş	11.7	115/8	2,11	21/4		244	_	-	
12	62.3	20.7	205/8	1.06	11/18	9/18	11.6	111/2	1.91	115/10		29/18	_	-	
92	56.2	20.4	203/4		15/18	12	11.5	11/2	1.75	13/4	2.15	27/15	11/8		_
=	51.4	20.0	8		8/	7/18	11.4	113/8	55	19/16	8	27/₁₽	7	151/3	
9	48.3	18,7	193/4		13/48	1/18	1.3	1174	1,44	17/18	2	23/1	_		_
Z :	420	19.5	19%		× 5		11.2		32	19/48	22	23HB	96/6		
52 5	9 5	2 5	2 .	0.07	E VIB	2	7 :	11.78	34	- I	9	2/11	_		
Z Z	24.4	2 0	183/		8/45	5/10		111/4	טמעט	16/46		11340			
: 9	20 K	9 0	185/6		2 / 4	2/40		11%	U 870	770		48/4			
	25.3	18.4	87/8		2	3	÷	111/8	0770	3/4	1.17	18/	11/16		
S.	22.3	18.2	181/4		7/16	7	11.0	Ξ	0.680	11/18		19/HB	_	>	>
- 24	20.9	18,5	181/2	0.495	1/2	7	7.64		0.810		1.21	14/2	1/8	151/2	31/21
23	19.1	18.4	183/8	0.450	7/18	*	7.59	16/9	0.750				7/B		-
1-4	17.6	18.2	1874	0,415	7/18	*	7.56	1/2	0.695			_	_		
= :	16.2	8 6	1878	0.390	B/0	3/16	7.53	7/2	0830	9 6	0.03	10/16	13/18	•	-
4	2	9	2	0.333	9/2	97.	7.90		n or	-	7100	1,4	BL/		-
5	L	707	40	the same	76	-	200		Parent.	K.	2	4 60	132.	4516	2110

M. M	1830 1890 1890 1890 1140 1170 984 843 6970 6170 6170 6170 6170 6170 6170 6170 61	5 192 192 193 194 194 195 195 195 195 195 195 195 195 195 195	8.70	7	ŀ	1						
	1830 1600 1400 1330 1140 959 959 1170 984 843 6970 6170 6170 6370 6430 8430 3870	192 171 151 140 110 110 111 111 94.5 81.6 824 855 855	8.70			63		7			,	ئ
	2070 1830 1480 1140 958 1170 984 843 6970 6170 5510 4900 4330 3870 3870	192 171 151 140 1127 1110 93.0 1111 94.5 81.6 824 855 565	8.70	In 3	In.4	20	П	10.3	ц	THE STREET	, uj	ln a
	1830 1480 1140 1140 958 1170 984 843 6970 6170 5510 4330 3870 3870	171 151 140 110 110 83.0 111 111 111 111 111 114 114	8.67	122	92.9	22.1	18	34.7	224	20.7	6.03	9940
	1600. 1480. 1140. 958. 1170. 984. 843. 6970. 6170. 5510. 4900. 4330. 3870. 3450.	151 140 110 110 83.0 111 111 83.5 81.6 81.6		196	81.4	19.5	1.83	30.5	221	20.6	4.32	0698
	1480 1133 1140 959 1170 984 843 6970 6170 5510 4900 4330 3870 3450	140 112 110 93.0 111 111 94.5 81.6 624 514	8,64	172	70.6	17.0	1.81	26.6	2.18	20.5	3.02	7410
	1330 1140 958 1170 984 843 6970 6170 6170 4900 4330 3870 3870	127 110 83.0 111 111 94.5 81.6 624 514	8.60	160	54.7	15.7	8	24.4	2.17	20.4	2.45	6760
	1140 959 1170 984 843 6970 6170 5510 4900 4330 3870 3870	110 83.0 111 194.5 81.6 624 564 514	8.54	144	57.5	14.0	1.7	21.7	2.15	20.4	1.83	2990
	959 1170 984 843 6970 6170 5510 4900 4330 3870 3450	93.0 111 111 94.5 81.6 82.4 565 514	8.40	126	48.4	11.8	1.73	18.4	2.11	203	1.24	4980
	984 984 843 6970 6170 5510 4900 4330 3870 3450	111 94.5 81.6 624 565 514	8.24	107	38.7	9.52	1.66	14.8	2.05	202	0.803	3850
	984 843 6970 6170 5510 4900 4330 3870 3450	94.5 81.6 624 565 514	8.36	\$2	30.6	9.35	1.35	14.8	88	20.5	1.77	3190
	6970 6170 5510 4900 4330 3870 3450	81.6 624 565 514	8.18	110	24.9	7.6		12.2	29,	20.3	1.14	2570
A CONTRACTOR SERVICES	6970 6170 5510 4900 4330 3870 3450	624 565 514	8.06	95.4	20.7	6.37		10.2	1.60	20.3	0.770	2110
	6170 5510 4800 4830 3870 3450	55 4 55	8.72	754	795	132	2.95	207	3.53	19.6	176	76200
ZIKRNIHENNI S S S. S. S.	5510 4800 4830 3870 3450	514	8,61	876	104	118	2.91	185	3,47	19,4	134	65900
Examinent S S St. 10	4800 4830 3870 3450	400	8.53	611	823	107	2.88	166	3.42	19.2	103	57600
Militeration S. S. St. Co.	4330 3870 3450	000	8,44	548	558	85.8	2.85	149	3.37	18.0	78.7	50100
interest S S St. St.	3870	418	8.35	490	493	85.3	2.82	133	3.32		58.6	43400
Section 2 2 22 20	3450	380	8.28	442	₹	78.8	2.79	119	3.28	18.7	44.7	38000
21 2 2 20 20		34	820	398	381	68.8	2.76	99	3.24	18.4	33.8	33300
8 8 82 30	3060	310	8.12	356	347	61.4	2.74	8,8	320	183	25.2	28000
8 32 30	2750	282	8.09	322	311	55.5	2.72	85.4	3.17	18.2	19.2	25700
	2460	256	8.03	88	278	49.9	2.70	76.7	3.13		14.5	22700
32 31	2190	231	7.90	292	253	44.9	2.69	69.1	3.13	17.9	10.6	×
6.41 7.20 8.11	1910	204	7.84	230	23	39.4	266	80.5	3.10	17,8	7.48	17400
7.20 B.11	1750	188	7.82	211	S	38.1	2.65	55.3	3.08		5.86	15800
8.11	1530	<u>\$</u>	11.7	186	175	31.6	2.63	48.4	3,05		4.10	13600
	1330	146	7.73	<u>≅</u>	152	27.6	2.61	42.2	3,02	17,5	2.83	11700
71 4.71 32.4	1178	127	7.50	148	60.3	15.8	1.70	24.7	2.05	17.7	3.49	4700
85 5.06 35.7	1070	117	7.49	133	54.8	14.4	1.69	22.5	203		2.73	4240
5.44 38.7	284	99	7.47	123	50.1	13.3	1.68	20.6	2.02		2.17	3850
55 5.98 41.1	880	98.3	7.41	112	44.9	11.9	1.67	18.5	2.00		1.86	
50 6.57 45.2	900	883	7.38	101	40.7	10.7	1,85	16.6	1.98	17.4	1.24	3040
46 5.01 44.6	712	78.8	7.25	200.7	22.5	7.43		11.7		17.5	1.22	1720
5.73	612	68,4	7.21	78.4	19.1	6.35	1.27	10.0	13	17.4	0.810	
35 7.06 53.5	510	57.6	7.04	66.5	15.3	5.12		8.06		17.3	0.506	
			i			0		į				

31/28

19/18 15/2 15/16

0.505 5/e 1.01 11/4 0.525 1/2 0.927 13/ns 0.425 7/ns 0.827 11/n

6.08 6.02 6.00 6.00

3/18

3/8 5/16

13.5 18.1 18 0.360 8/ 11.8 17.9 17/8 0.315 5/ 10.3 17.7 1774 0.300 8/

W18x46° x40° x35°

c Shape is slenger for composition with F_p = 50 ksi.
2 Shape is slenger compact timit for flexine with F_p = 50 ksi.
2 The actual size, combination and orientation of featines components should be compared with the geometry of this cross suction to enexis compositivity.
1 Range britatiess greater than 2 fn. Special inquirements may apply per ASP. Special subsidies Section A3.10:

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-15

1-14

56600

82400 71700

459000 408000 357000 319000 281000 224000 198000

456000 412000 378000 342000 316000 292000

168000 128000 116000 107000 98500 90200 82200 68100

In.8 1130000 846000 754000 681000 575000 509000

W36-W33

Torsional Properties

2

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

16.1-17

[a] $k_0 = d_1/DT_{12}^2$ but shall not be taken leas than 0.35 not greater than 0.70 for calculation purposes. [b] $f_0 = 0.77$, for major axis bending of compact and innocempact with bulk-up faithgood members with $S_0 + S_0 = 0.7$. $f_0 = f_0 S_0 = 0.5$, for major axis bending of compact and rencompact with bulk-up faithgood members with $S_0 + S_0 = 0.7$. (c) $f_0 = f_0 S_0 = 0.5$, for major bending of the activities bending moment, kin-lin, (N-mm) $f_0 = f_0 S_0 = 0.7$. $f_0 = f_0 S_0 = 0.7$, (N-mm) $f_0 = f_0 = 0.00$ for the $f_0 = 0.00$ for $f_0 = 0.00$ for $f_0 = 0.00$.

Specification for Structural Steel Buildings, June 22, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MAJOR AXIS 17

about their major axis, having compact webs and compact flanges as defined in This section applies to doubly symmetric I-shaped members and channels bent

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21×48, W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9, W6×8.5 and M4×6 have compact flanges for $F_{\rm y}=50$ kii (345 MPa); all current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at Fy S 65 ksi (450 MPa). The nominal flexural strength, M_n , shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

Yielding ij

$$M_{n} = M_{p} = F_{y} Z_{x} \tag{F2-1}$$

 $F_{\rm y}=specified$ minimum yield stress of the type of steel being used, ksi (MPa) $Z_x = \text{plastic section modulus about the x-axis, in,}^3 \text{(mm}^3\text{)}$

Lateral-Torsional Buckling

ri

(a) When $L_b \le L_p$, the limit state of lateral-torsional buckling does not apply. (b) When $L_p < L_b \le L_r$

$$M_n = C_b \left[M_p - \left(M_p - 0.7 F_{y,S_x} \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p$$
 (F2-2)

(c) When $L_b > L_r$

$$M_n = F_{cr} S_X \le M_p \tag{F2--3}$$

 $L_b=$ length between points that are either braced against lateral displacement of the compression flange or braced against twist of the cross section, in. (mm)

$$F_{cr} = \frac{C_b \pi^2 E}{\binom{I_d}{t_u}^2} \sqrt{1 + 0.078 \frac{J_C}{S_x h_o} \left(\frac{I_o}{r_u}\right)^2}$$
 (F2.4)

and where

E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

J = torsional constant, in.4 (mm⁴)

 $S_x = \text{clastic section modulus taken about the } x \text{-axis, in.}^3 \text{ (mm}^3\text{)}$

 $h_o = \text{distance between the flange centroids, in. (mm)}$

Specification for Structural Steel Buildings, June 22, 2010 AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS [Sect. F2.

User Note: The square root term in Equation F2-4 may be conservatively taken

User Note: Equations P2-3 and F2-4 provide identical solutions to the following expression for lateral-torsional buckling of doubly symmetric sections that has been presented in past editions of the AISC LRFD Specification:

$$M_{G^{*}} = C_{b} \frac{\pi}{L_{b}} \sqrt{EI_{y}GJ + \left(\frac{\pi E}{L_{b}}\right)^{2} I_{y}C_{y}}$$

The advantage of Equations F2-3 and F2-4 is that the form is very similar to the expression for lateral-torsional buckling of singly symmetric sections given in

The limiting lengths $L_{\mathcal{G}}$ and $L_{\mathcal{A}}$ are determined as follows:

$$L_p = 1.76t_y \sqrt{\frac{E}{F_y}}$$
 (F2.5)

$$L_r = 1.95 i_R \frac{E}{0.7 E_T} \sqrt{\frac{J_C}{8_S h_o}} + \sqrt{\left(\frac{J_C}{8_S h_o}\right)^2 + 6.76 \left(\frac{0.7 E_T}{E}\right)^2}$$
(F2-6)

$$\frac{1}{c} = \sqrt{l_y C_w}$$

(F2-7)

and the coefficient c is determined as follows:

(a) For doubly symmetric I-shapes: c = 1

(b) For channels:
$$c = \frac{h_0}{2} \sqrt{\frac{l_\gamma}{C_w}}$$
 (F2-8a)

User Note: For doubly symmetric I-shapes with rectangular flanges, $\mathbb{C}_{n_0} = \frac{I_2 h_0^2}{4}$ and thus Equation F2-7 becomes

$$r_{d}^{2} = \frac{I_{2}h_{0}}{2S_{s}}$$

en may be approximated accurately and conservatively as the radius of gyration of the compression flange plus one-sixth of the web;

$$\sqrt{12\left(1+\frac{1}{6}\frac{M_w}{b_f t_f}\right)}$$

Specification for Structural Steel Buildings, June 22, 2010 AMERICAN INSTITUTE OF STREE, CONSTRUCTION

OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS BENT ABOUT THEIR MAJOR AXIS 4.

axis with noncompact webs and singly symmetric I-shaped members with webs attached to the mid-width of the flanges, bent about their major axis, with compact This section applies to doubly symmetric I-shaped members bent about their major or noncompact webs, as defined in Section B4.1 for flexure.

Specification for Structural Steel Buildings, Time 22, 2010 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS [Sect. F4. 16.1-50

User Notes Lebrard members for which this section is applicable may be designed conservatively oring Section F5. The nominal flexural strength, Mn, shall be the lowest value obtained according to the timit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling, and tension flange yielding.

Compression Flange Yielding -i

$$M_n = R_{pc}M_{yc} = R_{pc}F_yS_{xc}$$
 (F4.1)

 $M_{yc}=yield$ moment in the compression flange, kip-in. (N-mm)

- Lateral-Torstonal Buckling
- (a) When $L_b \le L_p$, the limit state of lateral-torsional buckling does not apply. (b) When $L_p < L_o \le L_r$

$$M_n = C_b \left[R_{\mu c} M_{\mu c} - \left(R_{\mu c} M_{\mu c} - F_L S_{\mu c} \right) \left(\frac{L_b - L_p}{L_s - L_p} \right) \right] \le R_{\mu c} M_{\mu c}$$
 (F4-2)

(c) When L_b > L_r

where $M_{yc} = F_y S_{yc}$

$$M_n = F_{cr} S_{xc} \le R_{pc} M_{yc} \tag{F4-3}$$

(F4-4)

$$F_{cr} = \frac{C_0 \kappa^2 E}{\left(\frac{L_0}{\mu}\right)^2} \sqrt{1 + 0.4718} \frac{J}{S_{sc} k_0} \left(\frac{L_0}{\eta}\right)^2$$
 (F4-5)

For $\frac{I_{\rm NS}}{I_{\rm v}} \le 0.23$, J shall be taken as zero

 $J_{\rm yc}={\rm moment}$ of inertia of the compression flange about the y-axis, in ' 4 (num')

The sness, FL is determined as follows:

(i) When
$$\frac{S_{ad}}{S_{ac}} \ge 0.7$$

$$F_L = 0.7F_y$$
 (F4-6a)

(ii) When
$$\frac{S_H}{S_{I\!\!R}}$$
 < 0.7

$$F_L = F_y \frac{S_H}{S_{ge}} \ge 0.5F_y \tag{P4-6b}$$

Specification for Breathant Stool Buildings, Issue 22, 2010 American Destitutes of Street Construction

Sect. P4.] OTHER 1-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1-51

The limiting laterally unbraced length for the limit state of yielding, Lp, is deter-

$$L_p = 1.1 t_1 \sqrt{\frac{E}{F_y}} \tag{F4.7}$$

The ilmiting unbraced length for the limit state of inclastic lateral torsional buckling, L., is determined as:

$$L_q = 1.95 s_1 \frac{E}{F_L} \sqrt{\frac{J}{S_E h_0}} + \sqrt{\left(\frac{J}{S_E h_0}\right)^2 + 6.76 \left(\frac{F_L}{E}\right)^2}$$
 (F4-8)

The web plastification factor, Rpc, shall be determined as follows:

- (i) When $I_{yc}/I_y > 0.23$
- (a) When $\frac{h_c}{t_w} \le \lambda_{pw}$

$$R_{pc} = \frac{M_P}{M}. \tag{F4-9a}$$

(b) When
$$\frac{h_c}{f_w} > \lambda_{pre}$$

$$R_{pc} = \left[\frac{M_p}{M_{yc}} - \left(\frac{M_p}{M_{yc}} - 1 \right) \left(\frac{\lambda - \lambda_{pw}}{\lambda_{rw} - \lambda_{pw}} \right) \right] \leq \frac{M_p}{M_{yc}}$$
 (F4.9b)

(ii) When I_{ye}/I_y ≤ 0.23

$$R_{pc} = 1.0$$
 (F4-10)

 $M_p=F_pZ_r\leq 1.6F_pS_{2c}$ S_{2c},S_{2c} S_{2c},S_{2c} $S_{2c},S_{2r}=$ elastic section modulus referred to compression and tension flanges, respectively, in.3 (num3)

- ہ

- يد گر گر
- = λ_p , the limiting slendemess for a compact web, Table B4.1b = λ_p , the limiting slendemess for a noncompact web, Table B4.1b
- = twice the distance from the centroid to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the nearest line of fasteners at the compression flange or the inside faces of the compression flange when welds are used, for built-up sections, in.

Specification for Structural Steel Buildings, Itams 22, 2010 AMBRICAN INSTITUTE OF STEEL CONSTRUCTION

The effective radius of gyration for lateral-torsional buckling, r,, is determined as fol-

(i) Por L-shapes with a rectangular compression flange

$$\sqrt{12\left(\frac{h_0}{d} + \frac{1}{6}\omega_w \frac{h^2}{h_0 d}\right)}$$
 (74-11)

$$r_1 = \sqrt{\frac{c_{f_0}}{12\left(\frac{h_0}{d} + \frac{1}{6}a_w \frac{h^2}{h_0 d}\right)}}$$
 (F4-1)

$$b_{fc} =$$
width of compression flange, in (mm)

(F4-12)

te = compression flange thickness, in. (mm)

(ii) For I-shapes with a channel cap or a cover plate attached to the compression

 $r_I={\rm radius}$ of gyration of the flange components in flexural compression plus one-third of the web area in compression due to application of major axis

 $a_{\nu}=$ the ratio of two times the web area in compression due to application of major axis bending moment alone to the area of the compression flange bending moment alone, in. (mm)

User Note: For I-shapes with a rectangular compression flange, r-may be approximated accurately and conservatively as the radius of gyration of the compression flange plus one-third of the compression portion of the web, in other words

$$=\frac{b_R}{\sqrt{12\left(1+\frac{1}{6}a_w\right)}}$$

Compression Flange Local Buckling eri,

(a) For sections with compact flanges, the limit state of local bucking does not

(b) For sections with noncompact flanges

$$M_{B} = R_{pp} M_{pc} - \left(R_{pc} M_{pc} - F_{L} S_{pc} \right) \left(\frac{\lambda - \lambda_{pg}}{\lambda_{q} - \lambda_{pg}} \right) \tag{F4-13}$$

(c) For sections with slender flanges

$$r_{a} = \frac{0.9Ek_{c}S_{xx}}{\lambda^{2}}$$
 (F4-14)

Specification for Structural Seed Buildings, June 22, 2010 AMERICAN INSTITUTE OF STREE, CONSTRUCTION

G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS

Shear Strength

This section applies to webs of singly or doubly symmetric members and chamels subject to shear in the plane of the web,

The nominal shear strength, Vs. of unsuffened or seffened webs according to the limit states of shear yielding and shear hacking, is

$$V_{n} = 0.6F_{y}A_{yy}C_{y}$$

(62-1) Swelfcutten for Stratural Steel Buildings, Inne 22, 2010 American Institute of Strat. Construction

16.1-68

Members with Unstigation or Stephand Webs

Sect. G2.

(a) For webs of rolled I-shaped members with $h/t_w \le 2.24 \sqrt{E/F_y}$:

 $\Phi_v = 1.00 \text{ (LRFD)}$ $\Omega_v = 1.50 \text{ (ASD)}$

and

 $C_{\nu} = 1.0$

(G2-2)

User Note, All current ASTM A6 W, S and HP shapes except W44/230, W40x149, W36x135, W33x118, W30x90, W2xx55, W16x26 and W12x14 meet the criteria stated in Section G2.1(s) for F_g = 50 km (345 MPs).

(b) For webs of all other doubly symmetric shapes and singly symmetric shapes and channels, except round HSS, the web shear coefficient, C_i, is determined

(i) When h1t, \$1.10 /k, E1F,

 $C_{\nu} = 1.0$

(G2-3)(ii) When 1.10 $\sqrt{k_p E/F_p} < h/t_{log} \le 1.37 \sqrt{k_p E/F_p}$

C,= 1.10 /k,E/F,

(G2-4)

(iii) When h / to > 1.37 (k,E/F)

(G2-5) $C_{V} = \frac{1.51k_{V}E}{\left(h/t_{w}\right)^{2}F_{y}}$

A_w = area of web, the overall depth times the web thickness, d_w, in,² (mm²) & = for rolled shapes, the clear distance between flanges less the fillet or corner medii, in, (mm) = for built-up welded sections, the clear distance between flanges,

- for built-up bolted sections, the distance between fastener libes,

= for tees, the overall depth, in. (mm)

2, - thickness of web, in. (mm)

The web plate shear bucking coefficient, k,, is detertuined as follows:

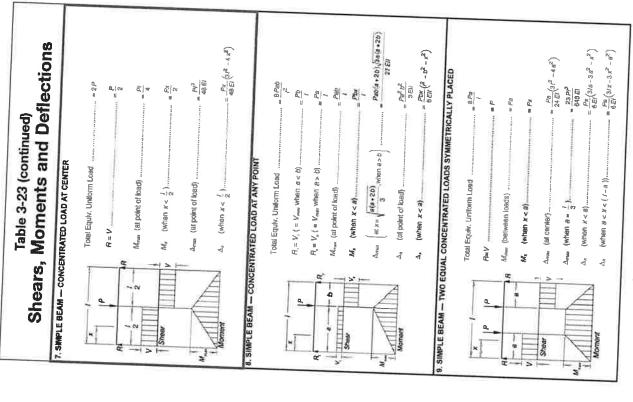
(1) For webs without transverse stiffeners and with $b\ell_{f_w} < 260$:

except for the stem of tee shapes where $k_{\rm p} = 1.2$,

Worthwater for Structural Steel Buildings, June 22, 2010 Andricke Institute of Struct Construction

MEMBERS WITH UNSTIFFERED OR STIFFERED WERS Sect. G2.)

16.1-69


 $k_r = 5 + \frac{5}{(a/b)^2}$ (ii) For webs with transvare stiffeners:

(G2-6)

= 5 when $a/h > 3.0 \text{ or } a/h > \frac{260}{(h/t_w)}^2$

a= clear distance between transverse stiffeners, in (mm)

User Notes For all ASTM A6 W, S, M and HP shapes except M12.5x12.4, M12.5x11.6, M12x11.8, M12x10.8, M12x10, M10x8 and M10x7.5, when F, = 50 int (345 MPs), C, = 1.0.

AMERICAN INSTITUTE OF STEEL CONSTELEMEN

Appendix D – Winch Inspection Report

American Crane and Hoist Corporation

1234 Washington Street, Boston, MA 02118; Phone: (617) 482 8383, Fax: 8384

		November 8, 2024	
Collins Engineers In			Job #43059
1485 South Country	Trail		
Suite 103	77010	-/	
East Greenwich, RI	J2010	a	· ·
RE: Marine Winch,	49 State Pier		
New Bedford			
01 1 1			
Attn: Christopher S	syivia		71
Dear Chris,			
		# 	
Enclosed are the OS		79 Inspection Reports dated Octobe	<u>r 23, 2024</u>
for your Crai	nes Mono	orails Hoists 🔀	Winches.
The second and out	the conditions at the t	time of inspection. CONDITIONS CAN	CHANGE BRASTICALLY
WITH A SINGLE MIST		inic of hispection. Combittons can	
Therefore, your open	ators should perform	a pre-operation inspection before using	g this equipment.
	s Inspection made no	evaluation of the Design, Engineeri	ng and Installation
of your System.			
Please take notice of	items emphasized wi	th the following color codes.	
110000 00000	1	C	
Red	DANGER	Indicates an imminently hazardous	
		if not corrected, will result in death This signal word is limited to the m	
		Time signar word is minied to the in	osi exactite stuations.
Orango	WARNING	Indicates a notentially hazardous sit	nation which.

Red	DANGER	if not corrected, will result in death or serious injury. This signal word is limited to the most extreme situations.
Orange	WARNING	Indicates a potentially hazardous situation which, if not corrected, could result in death or serious injury.
Yellow	CAUTION	Indicates a potentially hazardous situation which, if not corrected, may result in minor or moderate injury.
Blue	NOTICE	Indicates a potential situation which, if not corrected,

Please contact the undersigned with any question or concerns you may have regarding these reports.

INCh

Arthur Leon, P.E.

American Crane and Hoist Corporation

1234 Washington Street, Boston, MA 02118; Tel (617) 482-8383; Fax (617) 482-8384

WINCH INSPECTION REPORT

Our J	ob No: 43059
Date Inspection: 10/23/24	Serial #: E0440589
Capacity: 10,000 Lbs	Model: 10000B40
Voltage: 480V	Phase:
Main Winch	Winch #:
	Date Inspection: 10/23/24

LEGEND: G=Good; F=Fair; CL= Clean and/or Lubricate: R=Repair or Replacement Required

Item	Description	G	F	CL	R	Work done / Comments / Remarks
	Frame	Х				
	Bolts	X				
	Gear Box	X				
=	Guards		X			
.≘	Drum	X				
0.r	Drum Clamps	X				
≟	Drum Bearing	X				
Mechanical Portion	Rope				X	Replace (Reduced Diameter .729, Loose strands)
] <u> </u>	Rope Guide, Pressure Roller	_				
l ii	Rope Clamps	Х				
Je	Sheaves and Sheave Assemblies	Х				
2	Safety Latch	_				
	Hook / Hook Block	_				
	Live End fittings	-	ļ			
	Free Wheeling Clutch	-		_		
	Air / Electrical Motor	X		_		
<u></u>	Electrical control	Х		-		
Controls	Push Button	_	X	_		
=	Control Valve	-		-		
ಬಿ	Limit Switch		_	-	_	
8	Slack Line Limit Switch	_	-	-	-	
Power &	Safety Torque Limiter	7.7	-	-	-	
=	Electrical Motor Brake	X	-	-		
P ₀	Mechanical Load Brake	X	-	-	-	
	Accessible Power Disconnecting Means	X			-	
30	Directional Indication / Label		Х			
0 0	Warning Sign /Label	_				
l ne	Capacity Label	X				
<u>=</u>	Lubrication		X		_	
ဗိ	Auxiliary equipment		X	_		
Miscellaneous			_	_		

Comments/Remarks:			

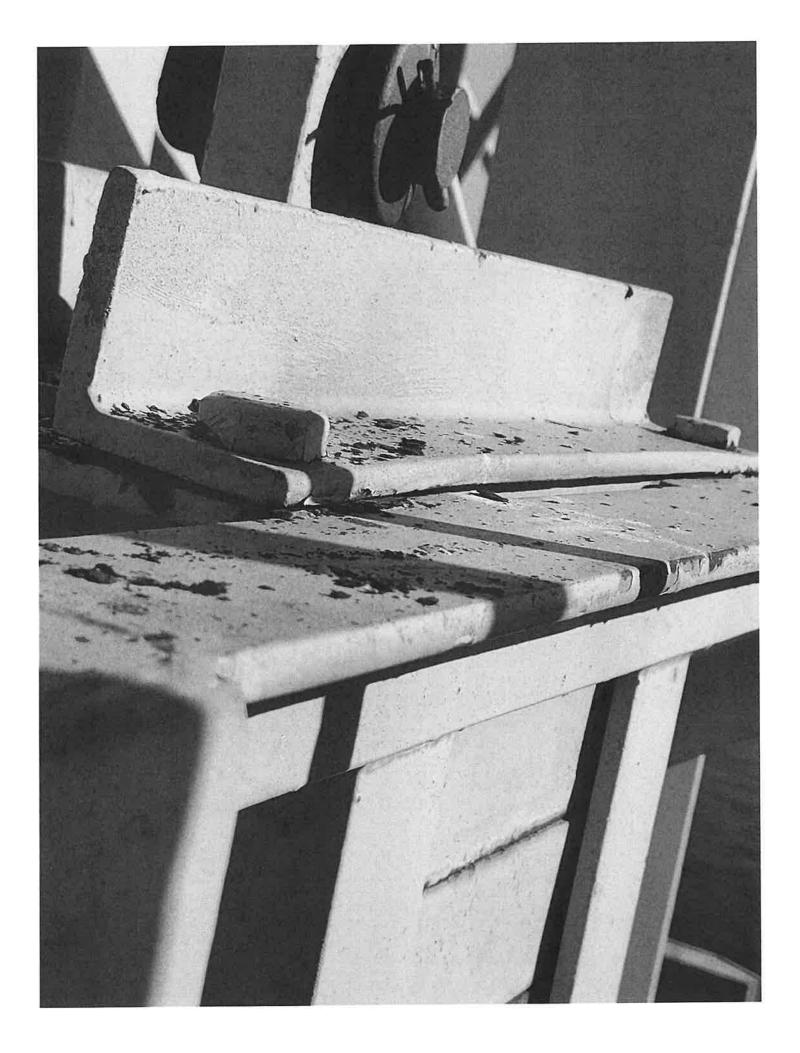
American Crane and Hoist Corporation 1234 Washington Street, Boston, MA 02118; Tel (617) 482-8383; Fax (617) 482-8384

Page 2

EMERENCY WINCH

Component	G	F	R	C	L	Comments/Remarks
Hand Wheel or Crank	X			X	X	Teman Ka
Guards			X	1	111	Dattada
Wire Rope			X		-	Rotted out
Load Hook			71		-	Replace (Reduced Diameter .729, Loose strands)
Hook Bolt						
Gearcase	X				X	
Brakes			X		- 1	Replace Brake Pad
Ratchet				X	X	replace Brake Pag
ANSI Warning Labels					- 1	
Capacity Label						

Further	Comments/Remarks:
	Winch appears not to have been used for years
	When replacing wire rope, winch should be cleaned, painted, and lubricated.


Transfer Bridge Auxiliary Equipment

- A) Transfer Bridge Counterweights
 - Electric Winch side eye bolt loose
 - 13/4" wire rope Fair condition
- B) Wire Rope Counterweights
 - 1/8" Wire Rope Fair condition
 - Top angle iron bent both sides
 - Sockets, Sheave Blocks, Shackles, hardware, etc Good condition
- C) Transfer Bridge Safety Locks
 - Manual Locks OK

